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A Universal Algorithm for Sequentia l Data Compression 

JACOB ZIV, FELLOW, IEEE, AND ABRAHAM LEMPEL, MEMBER, IEEE 

Abstract-A universal algorithm for sequential data compres- 
sion is presented. Its performance is investigated with respect to 
a nonprobabilistic model of constrained sources. The compression 
ratio achieved by the proposed universal code uniformly ap- 
proaches the lower bounds on the compression ratios attainable by 
block-to-variable codes and variable-to-block codes designed to 
match a completely specified source. 

I. INTRODUCTION 

I N MANY situations arising in digital com- 
munications and data processing, the encountered 

strings of data display various structural regularities or are 
otherwise subject to certain constraints, thereby allowing 
for storage and time-saving techniques of data compres- 
sion. Given a discrete data source, the problem of data 
compression is first to identify the limitations of the source, 
and second to devise a coding scheme which, subject to 
certain performance criteria, will best compress the given 
source. 

Once the relevant source parameters have been identi- 
fied, the problem reduces to one of minimum-redundancy 
coding. This phase of the problem has received extensive 
treatment in the literature [l]-[7]. 

When no a priori knowledge of the source characteristics 
is available, and if statistical tests are either impossible or 
unreliable, the problem of data compression becomes 
considerably more complicated. In order to overcome these 
difficulties one must resort to universal coding schemes 
whereby the coding process is interlaced with a learning 
process for the varying source characteristics [8], [9]. Such 
coding schemes inevitably require a larger working mem- 
ory space and generally employ performance criteria that 
are appropriate for a  wide variety of sources. 

In this paper, we describe a universal coding scheme 
which can be applied to any discrete source and whose 
performance is comparable to certain optimal fixed code 
book schemes designed for completely specified sources. 
For lack of adequate criteria, we do not attempt to rank the 
proposed scheme with respect to other possible universal 
coding schemes. Instead, for the broad class of sources 
defined in Section III, we derive upper bounds on the 
compression efficiency attainable with full a  priori 
knowledge of the source by fixed code book schemes, and 

Manuscript received June 23, 1975; revised July 6, 1976. Paper pre- 
viously presented at the IEEE International Symposium on Information 
Theory, Ronneby, Sweden, June 21-24,1976. 

J. Ziv was with the Department of Electrical Engineering, Technion- 
Israel Institute of Technology, Haifa, Israel. He is now with the Bell 
Telephone Laboratories, Murray Hill, NJ 07974. 

A. Lempel was with the Department of Electrical Engineering, Tech- 
nion-Israel Institute of Technology, Haifa, Israel. He is now with the 
Sperry Research Center, Sudbury, MA 01776. 

then show that the efficiency of our universal code with no 
a priori knowledge of the source approaches those 
bounds. 

The proposed compression algorithm is an adaptation 
of a  simple copying procedure discussed recently [lo] in 
a study on the complexity of finite sequences. Basically, 
we employ the concept of encoding future segments of the 
source-output via maximum-length copying from a buffer 
containing the recent past output. The transmitted 
codeword consists of the buffer address and the length of 
the copied segment. W ith a predetermined initial load of 
the buffer and the information contained in the codewords, 
the source data can readily be reconstructed at the de- 
coding end of the process. 

The main drawback of the proposed algorithm is its 
susceptibility to error propagation in the event of a  channel 
error. 

II. THE COMPRESSION ALGORITHM 

The proposed compression algorithm consists of a  rule 
for parsing strings of symbols from a finite alphabet A into 
substrings, or words, whose lengths do not exceed a pre- 
scribed integer L,, and a coding scheme which maps these 
substrings sequentially into uniquely decipherable code- 
words of fixed length L, over the same alphabet A. 

The word-length bounds L, and L, allow for bounded- 
delay encoding and decoding, and they are related by 

L, = 1 + [log (n - L,$)l + [log L,l, (1) 

where [xl is the least integer not smaller than x, the log- 
arithm base is the cardinality (Y of the alphabet A, and n 
is the length of a  buffer, employed at the encoding end of 
the process, which stores the latest n  symbols emitted by 
the source. The exact relationship between n and L, is 
discussed in Section III. Typically, n  N L,ahLs, where 0 
< h < 1. For on-line decoding, a buffer of similar length has 
to be employed at the decoding end also. 

To describe the exact mechanics of the parsing and 
coding procedures, we need some preparation by way of 
notation and definitions. 

Consider a finite alphabet A of CY symbols, say A = 
(O,l, * * * ,cr - 1). A string, or word, S of length a(S) = h over 
A is an ordered h-tuple S = ~1.~2 - * . Sk of symbols from A. 
To indicate a substring of S which starts at position i and 
ends at position j, we write S(i,j). When i 5  j, S(i,j) = 
s;s,+i .-*sj, but when i > j, we take S(i,j) = A, the null 
string of length zero. 

The concatenation of strings Q and R forms a new string 
S = QR; if k(Q) = h and t(R) = m, then a(S) = h + m, Q 
= S(l,h), and R = S(k + 1, h  + m). For each j, 0  I j 5  
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e(S), S(lj) is called a prefix of S; S(lj) is a proper prefix 
of S if j < a(S). 

Given a proper prefix S(lj) of a string S and a positive 
integer i such that i I j, let L(i) denote the largest non- 
negative integer e i” e(S) - j such that 

S(i,i + 4 - 1) = Sg’ + 1,j + e), 

and let p be a position of S(l,j) for which 

L(p) = max {L(i)}. 
l&s; 

The substring Sg’ + 1,j + L(p)) of S is called the repro- 
ducible extension of S(l,j) into S, and the integer p is 
called the pointer of the reproduction. For example, if S 
= 00101011 and j = 3, then L(1) = 1 since S(j + 1,j + 1) = 
S(1,l) but S(i + 1,j + 2) # S(1,2). Similarly, L(2) = 4 and 
L(3) = 0. Hence, S(3 + 1,3 + 4) = 0101 is the reproducible 
extension of S(1,3) = 001 into S with pointer p = 2. 

Now, to describe the encoding process, let S = sisz * * . 
denote the string of symbols emitted by the source. The 
sequential encoding of S entails parsing S into successive 
source words, S = S1Sz.. . , and assigning a codeword Ci 
for each Si. For bounded-delay encoding, the length e, of 
each Si is at most equal to a predetermined parameter L,? , 
while each Ci is of fixed length L, as given by (1). 

To initiate the encoding process, we assume that the 
output S of the source was preceded by a string Z of n - 
L, zeros, and we store the string Bi = ZS(l,L,) in the 
buffer. If S(l,j) is the reproducible extension of 2 into 
ZS(l,L, - I), then Si = S(l,j + 1) and Cl = j + 1. To de- 
termine the next source word, we shift out the first tl 
symbols from the buffer and feed into it the next f?i sym- 
bols of S to obtain the string Bz = Bi(Ci + l,n)S(L,s + 1, 
L, + ai). Now we look for the reproducible extension E of 
Bs(l,n - L,) into Bs(l,n - l), and set Sz = Es, where s is 
the symbol next to E in Bz. In general, if Bi denotes the 
string of n source symbols stored in the buffer when we are 
ready to determine the ith source word Si, the successive 
encoding steis can be formally described as follows. 

1) Initially, set Bi = 0 “-L6’(1,L,s), i.e., the all-zero 
string of length n - L, followed by the first L, symbols of 
S. 

2) Having determined B;, i I 1, set 

Si = Bi(n - L, + 1,n - L, + l?i), 

where the prefix of length ei - 1 of S; is the reproducible 
extension of $;(l,n - L,) intoBi(l,n - 1). 

3) If pi is the reproduction pointer used to determine 
Si, then the codeword CL for Si is given by 

ci = CilCd&, 

where Cii is the radix-a representation of pi - 1 with 
!?(C;,) = [log (n - L,)], Ciz is the radix-a representation 
of ei - 1 with e(Ciz) = [log L,], and Cis is the last symbol 
of Si, i.e., the symbol occupying position n - L,? +’ J?i of Bi. 
The total length of CL is given by 

E(Ci) = [log (n - L,)] + [log L,J + 1 

4) To update the contents of the buffer, shift out the 
symbols occupying the first ei positions of the buffer while 
feeding in the next ei symbols from the source to obtain 

B;+l = Bi(Ci + l,n)S(h; + l,hi + ei), 

where hi is the position of S occupied by the last symbol 
of B;. 

This completes the description of the encoding process. 
It is easy to verify that the parsing rule defined by (2) 
guarantees a bounded, positive source word length in each 
iteration; in fact, 1 5 e; I L, for each i thus allowing for 
a radix-a representation of ei - 1 with [log L,l symbols 
from A. Also, since 1 5 p; I n - L,? for each i, it is possible 
to represent pi - 1 with [log (n - L,)l symbols from A. 

Decoding can be performed simply by reversing the 
encoding process. Here we employ a buffer of length n - 
L,s to store the latest decoded source symbols. Initially, the 
buffer is loaded with n - L, zeros. If Di = dldz *. . dn-L,, 
denotes the contents of the buffer after CL-1 has been de- 
coded into $1, then 

Si-1 = D;(n -L, - ei-1 + 1,n -L,?), 

where e;-i = E(S’-I), and where Di+l can be obtained 
from Di and Ci as follows. 

Determine pi - 1 and J; - 1 from the first [log (n - L,)] 
and the next [log L,l symbols of C;. Then, apply Ci - 1 
shifts while feeding the contents of stage pi into stage n - 
L,. The first of these shifts will change the buffer contents 
from D; to 

D(1) = d i 2 3.. . d,+d,, = dj”dh” . . . dj,! ,,,. d 

Similarly, if j I Ci - 1, the jth shift will transform bij-‘) 
= d~-l)d~-‘) . . . dJ1’Ii’, into Did = d~-l)dfl). . . 
d+~;d~,-” = d~l’&’ . . . d(il’)Ls. After these ei - 1 
shifts are completed, shift once more, while feeding the last 
symbol of Ci into stage n - L, of the buffer. It is easy to 
verify that the resulting load of the buffer contains Si in 
its last &i = a(S) positions. 

The following example will serve to illustrate the me- 
chanics of the algorithm. Consider the ternary (a = 3) 
input string 

s = 001010210210212021021200~~~, 

and an encoder with parameters L, = 9 and n = 18. (These 
parameters were chosen to simplify the illustration; they 
do not reflect the design considerations to be discussed in 
Section III.) According to (l), the corresponding codeword 
length is given by 

L, = 1 + logs (18 - 9) + logs 9 = 5. 

Initially, the buffer is loaded with n - L, = 9 zeros, fol- 
lowed by the first L, = 9 digits of S, namely, 

B1=OOOOOOOOO 001010210. 
-m 

n-L,=9 L, = 9 

To determine the first source word Si, we have to find the 
longest prefix Bi(lQ9 + Ci - 1) of 

Bi(lQJ7) = 0 0 10 10 2 1 in accordance with (1). 
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which matches a substring of B1 that starts in position p1 
I 9  and then set Si = Bi(10,9 + .!‘I). It is easily seen that 
the longest match in this case is Bi(lO,ll) = 00, and hence 
Si = 001 and .!?I = 3. The pointer p1 for this step can be any 
integer between one and nine; we choose to set p  I= 9. The 
two-digit radix-3 representation of p1 - 1  is Cii = 22, and 
that of Cl- 1  is Ciz = 02. Since Cis is always equal to the 
last symbol of Si, the codeword for Si is given by Ci = 
22021. 

To obtain the buffer load BS for the second step, we shift 
out the first di = 3 digits of B1 and feed in the next 3 digits 
S(10,12) = 210 of the input string S. The details of steps 
2,3, and 4 are tabulated below, where pointer positions are 
indicated by arrows and where the source words Si are 
indicated by the italic substring of the corresponding 
buffer load B; 

Typically, such a source (r is defined by specifying a fi- 
nite set of strings over A which are forbidden to appear as. 
substrings of elements belonging to c, and therefore a(m) 
< am for all m  exceeding some mo. 

W ith every source u, we associate a sequence h(l), 
h(2), . . . of parameters, called the h-parameters of u, 
where1 

h(m) = i log o(m), m  = 1,2, -. -. (2) 

It is clear that 0  5 h(m) 5 1 for all m  and, by 2) it is also 
clear that mh(m) is a nondecreasing function of m. The 
sequence of h-parameters, however, is usually nonin- 
creasing in m. To avoid any possible confusion in the se-$ 
quel, we postulate this property as an additional defining 
property of a  source. Namely, we require 

1 4) h(m) = l/m log a(m) is a nonincreasing function of 
Bz.=000000001UlU210210, cz = 21102 m. 

1 
Bs=O00010102102102120, c3 = 20212 

B. Some Lower Bounds on the Compression Ratio 

1 
Consider a compression coding scheme for a source u 

Bq=210210212021021200, cq = 02220. 
which employs a block-to-variable (BV) code book of M  
pairs (Xi,Yi) of words over A, with [(Xi) = L for i = 
1,2, . - * ,M. The encoding of an infinitely long string S E : 

III. COMPRESSIONOFCONSTRAINEDSOURCES u by such a code is carried out by first parsing S into blocks 

In this section, we investigate the performance of the 
of length L, and then replacing each block Xi by the cor- 

proposed compression algorithm with respect to a non- 
responding codeword Yi. It is assumed, of course, that the 

probabilistic model of constrained information sources. 
code book is exhaustive with respect to u and uniquely 

After defining the source model, we derive lower bounds 
decipherable 121. Hence, we must have 

on the compression ratios attainable by block-to-variable (X,)$ = u(L) 
and variable-to-block codes under full knowledge of the 
source, and then show that the compression ratio achieved 

or 

by our universal code approaches these bounds. M  = u(L) = &h(L), (3) 

A. Definition of the Source Model 
and d 

Let A = {O,l, . - . ,LY - 1) be the given a-symbol alphabet, max (t(Yi)j I log M  = Lb(L). (4) 
and let A* denote the set of all finite strings over A. Given lsi<M 

a string S E A* and a positive integer m  5 k’(S), let S(m) The compression ratio pi associated with the ith word- 
denote the set of all substrings of length m  contained in S, pair of the code is given by 
and let S(m) denote the cardinality of S{m]. That is, 

CL%-772 
p’ _ E(Yi) 

L- 
1 . 

S(m) = ‘,$JJ S(i + 1,i + m) 
u 

The BV compression ratio, p~v(u,M), of the source us 

and 

S(m) = ISImll. 

Given a subset u of A *, let 

is defined as the minimax value of pi, where the maximi- 
zation is over all word-pairs of a  given code, and the min- 
imization is over the set CBV(U,M) of all BV code books 
consisting of M  word-pairs. Thus, 

u{m) = {S E all?(S) = m], p~v(u,M) = min E(Yi) max - 
and let u(m) denote the cardinality of u(m). 

C,qv(u,M) 1cicM 1 I L  

A subset u of A* is called a source if the following three 
properties hold: > log M  - Lb(L) = h(L) 

- L  L 
1) A C u (i.e., u  contains all the unit length strings), 
2) S E u implies SS E u, 
3) S E u implies S{m) C u(m). 1 Throughout this paper, log I means the base-a logarithm of x. 
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For later reference, we record this result in the following 
lemma. 

Lemma 1: 

where 

PBV(U,M) 2 h(L), 

Lb(L) = log M. 

Now, consider a compression scheme which employs a 
variable-to-block (VB) code book of M word-pairs (Xi, Yi), 
with ,!?(Yi) = L for all i = 1,2, . . . ,M. In this case, the 
compression ratio associated with the ith word-pair is 
given by 

Remarks 
1) Since the value of L in the context of Lemma 1 

satisfies the definition of LM as given in Lemma 2, it fol- 
lows that the bounds of both lemmas are essentially the 
same, despite the basic difference between the respective 
coding schemes. 

2) By 2), the second defining property of a source, the 
per-word bounds derived above apply to indefinitely long 
messages as well, since the whole message may consist of 
repeated appearances of the same worst case word. 

3) By 4), the nonincreasing property of the h-pa- 
rameters, the form of the derived bounds confirms the 
intuitive expectation that an increase in the size M of the 
employed code book causes a decrease in the lower bound 
on the attainable compression ratio. 

and similarly, the VB compression ratio pve(u,M) of u is 
defined as the minimax value of pi over all word-pairs and 

C. Performance of the Proposed Algorithm 

over the set cv~(a,M) of VB code books with M word- We proceed now to derive an upper bound on the com- 
pairs. pression ratio attainable by the algorithm of Section II. To 

Lemma 2: this end, we consider the worst case source message of 

PVB(G’W 1 hKM) 
length n - L,, where n is the prospective buffer length and 
L, is the maximal word-length. The bound obtained for 

where this case will obviously apply to all messages of length n 
- 

LM = max (lj M 1 u(e)). 
L, or greater. 
First, we assume that only the h-parameters of the 

Proof: We may assume, without loss of generality, that source under consideration are known to the designer of 
in every code under consideration the encoder. Later, when we discuss the universal perfor- 

mance of the proposed algorithm, we will show that even 
E(X,) I E(X,) I * * * I C(X,), this restricted a priori knowledge of the source is actually 

unessential. 
and hence for each C E cv~(u,M), We begin by choosing the buffer length n to be an inte- 

L(C) 
ger of the form 

max pi(C) = - 
c (Xl)’ 

(5) x 
n= C mcu”+ i mu(C) + (E + l)(Nt+l + 11, 

Since C is exhaustive with respect to u, we have m=l m=X+l 

M 1 u(Ed, (6) (9) 

where .!, = 4(X,); and since C is uniquely decipherable, 
where 

we have 

L(C) 2 log M. (7) 
Nt+l =m$ (E - m)arn + 5 (E - mM0, (10) 

m=X+l 

From the definition Of LM, inequality (6), and the nonde- 
X = Lah(&)J, the integer part of log u(d) = Ch(e), and 

creasing property of a(.!), we obtain e=L,-1. (11) 

e, 5 LM, (8) The specific value of the parameter L, is left for later 
determination (see the first remark following the proof 

From (5), (7), and (8), we have of Theorem 1). The reasoning that motivates the given 

log M 
form of n will become clear from subsequent deriva- 

max pi (C) 2 -; tions. 
LM Consider a string S E u]n - L,), and let N(S) denote the 

and since number of words into which S is parsed by the algorithm 

M 2 u(LM) = &‘MhcL”‘), 
during the encoding process. Recalling that each of these 
words is mapped into a codeword of fixed length L, (see 

it follows that for each C E Cve(u,M), 
(l)), it follows that the compression ratio p(S) associated 
with the string S is given by 

max pi(C) > h(LM). 
Q.E.D. PW = 5 N(S). 

s 
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Hence, the compression ratio p attainable by the algorithm 
for a given source u is 

where 

P Lc N =- 
n-L, ’ 

(12) 

N = max N(S). 
SEC+-LS] 

Let Q E u{n - L,) be such that N(Q) = N, and suppose 
that the algorithm parses Q into Q = QiQs.. . QN. From 
step 2) of the encoding cycle it follows that if a(Qi) = C(Qj) 
< L,, for some i < j < N, then Qi z Qj. (Note that when 
Qj is being determined at the jth cycle of the encoding 
process, all of Qi is still stored in the buffer, and since [(Qj) 
< L,, the longest substring in the buffer that precedes Qj 
and is a prefix of Qj must be of length e(Qj) - 1.) 

Denoting by K, the number of Qi, 1  5 i I N - 1, of 
lengthm,l<m<L,,wehave 

N=l+ 2 K,. 
m=l 

By the above argument, and by property 3) of the source, 
we have 

Km 5 u(m), forl<m<e=L,-1. 

Since 
c-t1 

n --L = E(QN) + C mK,, 
m=l 

and n and L, are both fixed, it is clear that by overesti- 
mating the values of K, for 1 I m 5 C at the expense of 
K~+I, we can only overestimate the value of N. Therefore, 
since u(m) 5 u(m + 1) and u(m) = amhtrn) 5 am, we ob- 
tain 

where 

N I K;+l + c K:, = N’, (13) 
m=l 

or 

n-L n - L, N<N’=~=----- 
e  L, - 1’ (16) 

Hence, from (12) and (16), we have 

(17) 

Note that despite the rater rudimentary overestimation 
of N by N’, the upper bound of (17) is quite tight, since the 
fact that no source word is longer than L, immediately 
implies p 2 L,/L,. 

We  can state now the following result. 
Theorem 1: If the buffer length n for a  source with 

known h-parameters is chosen according to (9), then 

P 5 h& - 1) + G,), 

where 

&L) = & 3+31og(L, - I)+log$ . 
s ( > 

Proof: From (1) we have 

L, = 1 + [log L,l + [log (n - L,)l 

I 3  + log (L, - 1) + log (n -L,?). 

From (9) and (10) we obtain 

n - L  = E mjYl (E - rn)cP + 
[ 

5  (+!? - m)u(t) 
m=h+l 

+k 
*=I 

am + .,=iI+, U(C)]> 

and since am I u(l), for 1  I m  I A, we have 

n -L, I [u(t) f, (t - m  + 1) = i12(4! + l)a(C), 

or 

log(n-L,)I2logC+log q + Ch(t). 
L, 

KI, = am> for 1  5 m  _< X = Lth(t?)] 

de, for X < m  I & (14) Since C = L, - 1, we obtain 

and L,.3+310g(L,-1)+log~+(L,- lh(-L - 11, 

K’e+l = n-L,-;rnK,, . 
m=l 

(15) or 

From (14), (15), and (9), we obtain Kit, = Ne+l, and L, i (L, - l)[h(L, - 1) + c(L,)]. 

N’ = Ne+l + 2 am + -IL de) 

Substituting this result into (17), we obtain the bound of 
Theorem 1. 

m=l *=X+1 Q.E.D. 

which, together with (9) and (lo), yields Remarks 
1) The value of t(L,) decreases with L, and, conse- 

n-L,-tN’= 2 mLym+ 2 mu(t) quently, the compression ratio p approaches the value of 
m=l m=X+l h(L, - l), the h-parameter associated with the second 

ffm + ,,=i+, u(E) 1 
largest word-length processed by the encoder. Given any 

= 0, 6  > 0, one can always find the least integer e, such that 
p  - h(C, - 1) I 6. The magnitude of the acceptable de- 
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viation 6 determines the operational range of L,, namely, 
L, 1 c,. 

2) Since our code maps source words of variable 
length at most L, into codewords of fixed length L,, we 
adopt as a reference for comparison the best VB code Cvs 
discussed in Subsection III-B. The counterpart of our 
block-length L, is L(C) of (5), and by (7) we can write 

L, = log M = LMh(LM), (18) 

where M is the code book size and I is the lower 
bound (see Lemma 2) on the compression ratio PVB at- 
tainable by Cvs. Since for sufficiently large L,, we have 
also 

L, = tL - 1)~ = (L - l)Ws - 11, 

it fOllOWS that p = pVB. 

(19) 

We turn now to investigate the universal performance 
of the proposed algorithm, i.e., the performance when no 
a priori knowledge of the source to be compressed is 
available. 

Given 61 and hl such that 0 < 61 < hl < 1, let Cl be the 
least positive integer satisfying 

6&(Pl+l)=; 3+3logE~+log~), 
( 

Cl + 1 

and let K = aClhl and X1 = Lk’lhlJ. Consider the encoder 
El which employs a buffer of length nl = n(hl,Cl), ob- 
tained from (9) and (10) by setting C = Cl, X = hl, and u(l) 
= K, and whose maximal word-length L, is equal to e, + 
1. 

It follows from Theorem 1 that if this encoder is applied 
to a source al such that h,,(tl) = hl, then the resulting 
compression ratio pl(ul) satisfies 

PI(~ 5 &led + 61 = hl + 61. (20) 

Suppose now that hl and 61 were chosen to fit the pre- 
scribed upper value p1 = hl + 61 of a prospective com- 
pression ratio range (pO,pl) with 

0 < 61R < p. < p1 < 1, R > 1, (21) 
where R is an adjustment parameter to be determined 
later. As shown above, the encoder El is then matched 
exactly to the upper value p1 of the prospective compres- 
sion range. In order to accommodate the whole given range, 
we propose to employ a slightly larger encoder EO whose 
buffer is of length no = nl - ei+ to, where nl and Cl are 
the parameters of El, and where CO is an integer, greater 
than .!?I, for which the solution ho of the equation 

nl - TV + lo = n(ho,t,-J (22) 

satisfies 

po - &?o) < ho I po - ~(k’,, + 1). (23) 

Noting that no - lo = nl - el is fixed, it is clear from (9) 
and (10) that as CO increases ho decreases; also, (21) and the 
fact that ee > er imply that po - E(~O + 1) > po - #I+ 1) 
1 po - 61 > 0. Hence, there exist ho > 0 and de > Cl that 
satisfy both (22) and (23). 

In analogy with (20)) it is also clear that if Ee is applied 
to a source a0 such that h,,(k’o) = ho, then the resulting 
compression ratio po( us) satisfies 

PO(UO) 5 hi,, + 60 = ho + 60, 

where a0 = ~(40 + 1). 

(24) 

From (23) and (24), we have PO(Q) 5 po - t(Co + 1) + 6. 
= PO, and 

60 5 po - h,, < t(f?o) I c(C1 + 1) 5 61 < ; po. 

Hence, ho can be made arbitrarily close to po, and conse- 
quently, the encoder Es matches as closely as desired the 
lower end po of the given compression range. 

Theorem 2: Let u be a source for which a matched en- 
coder E achieves a compression ratio p(u) within the range 
(po,p~). Then the compression ratio PO(U), achieved for CT 
by Eo, satisfies 

where 

PO(U) 5 p(u) + 4 

A < bgdl ~ d =-ax{?,&]. 
El 

(Typically, (hllho) > (l/l - ho) and d = (hJho).) 

Proof: To prove the theorem we shall consider the 
obviously worst case of applying Eo to the source ui whose 
matched encoder El realizes pl. 

Let po(ul) denote the compression ratio achievable by 
EO when applied to ui. According to (12), we have 

PO(a) = Leo 
n0 - (40 + 1) 

No(n), 

where 

L,. = 1 + ri0g (Ci + 1)1 + ri0g (ni - &i - 1)1, 
i E WI, 

and Ni(uj), i,j E (O,l), is the maximum number of words 
into which a string S E uj(ni - !i - 1) is parsed by EL. 

Since no - to = n1 - Cl and to > er, it is easy to verify 
that2 Ne(ui) 5 Nl(u& Also by (16), 

Nl(ud 5 Nl(ud = 
nl - (El + 1) = n0 - tE0 + 1) 

e1 El 

Hence 

po(ul) &LL,l+ 
L 

co 
- Ll 

e1 e1 Cl 

sPl+ 
L CO -L1 

41 
, 

and since 

L co - L,~ = riOg (to + i)i - rb (el + ui 5 ri0g ki, 

2 The assertion here is analogous to that of [lo, theorem I]. 
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where k = (Eolal), we obtain Moreover, for given complexity i.e., a given codeword 

PO(d 5 Pl + i rbg kl. 
length, the compression efficiency is comparable to that 

(25) of an optimal variable-to-block code book designed to 
match a given source. 

To obtain an upper bound on k, we first observe that 

Eo 2 tE0 - m + l)c80ho I no - Co 
*=X0+1 

[l] D. A. Huffman, “A method for the construction of minimum-re- 
dundancy codes,“Proc. IRE, vol. 40, pp. 1098-1101,1952. 

= nl - El I Cl 2 (El - m + l)Cfe’hl, 
[21 R. M. Karp, “Minimum-redundancy coding for the discrete noiseless 

channel,” IRE Trans. Inform. Theory, vol. IT-17, pp. 27-38, Jan. 
m=l 

k2(1 - ho)2 _< &h~(l-k(ho/h~)). 

k5max[?,-&--]=d. 

1961. 
[31 I B. F. Varn, “Optimal variable length codes,” Inform. Contr., vol. 

19, pp. 289-301,197l. 
141 I Y. Perl, M. R. Gary, and S. Even, “Efficient generation of optimal 

prefix code: Equiprobable words using unequal cost letters,” J. 
ACM, vol. 22, pp. 202-214, April 1975. 

[51 A. Lempel, S. Even, and M. Cohn, “An algorithm for optimal prefix 
parsing of a noiseless and memoryless channel,” IEEE Trans. In- 
form. Theory, vol. IT-19, pp. 2081214, March 1973. 

[61 F. Jelinek and K. S. Schneider. “On variable lentih to block coding,” 
IEEE Trans. Inform. Theory, vol. IT-18, pp. 765-774, Nov. 1972. 

[71 R. G. Gallager, Information Theory and Reliable Communication. 
New York: Wiley, 1968. 

M J. Ziv, “Coding of sources with unknown statistics-Part I; Proba- 

Q.E.D. bility of encoding error,” IEEE Trans. Inform. Theory, vol. IT-18, 
pp. 384-394, May 1972. 

PI L. D. Davisson, “Universal noiseless coding,” IEEE Trans. Inform. 
Theory, vol. IT-19, pp. 783-795, Nov. 1973. 

[a A. Lempel and J. Ziv, “On the complexity of finite sequences,” IEEE 
Trans. Inform. Theory, vol. IT-22, pp. 75-81, Jan. 1976. 

[Ill I B. M. Fitingof, “Optimal coding in the case of unknown and 
changing message statistics,” Prob. Inform. Transm., vol. 2, pp. 
3-11,1966. 

which reduces to 

(26) 

Now, either k(1 - ho) < 1, or else the exponent on the 
right side of (26) must be nonnegative and thus k I (hl/ 
ho). In either case, 

Theorems 1 and 2 demonstrate the efficiency and uni- 
versality of the proposed algorithm. They show that an 
encoder designed to operate over a prescribed compression 
range performs, practically, as well as one designed to 
match a specific compression ratio within the given range. 
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On Binary Sliding Block Codes 
TOBY BERGER, SENIOR MEMBER, IEEE, AND JOSEPH KA-YIN LAU 

Abstract-Sliding block codes are an intriguing alternative to 
the block codes used in the development of classical information 
theory. The fundamental analytical problem associated with the 
use of a sliding block code (SBC) for source encoding with respect 
to a fidelity criterion is that of determining the entropy of the coder 
output. Several methods of calculating and of bounding the output 
entropy of an SBC are presented. The local and global behaviors 
of a well-designed SBC also are discussed. The so-called “lOl- 
coder,” which eliminates all the isolated zeros from a binary input, 
plays a central role. It not only provides a specific example for 
application of the techniques developed for calculating and 
bounding the output entropy, but also serves as a medium for ob- 
taining indirect insight into the problem of characterizing a good 
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SBC. An easily implementable SBC subclass is introduced in which 
the outputs can be calculated by simple logic circuitry. The study 
of this subclass is shown to be closely linked with the theory of al- 
gebraic group codes. 

I. INTRODUCTION 

S HANNON’S development of the theory of 
source coding subject to a fidelity criterion [l], [2] 

dealt almost exclusively with block coding, i.e., the map- 
ping of consecutive, nonoverlapping, fixed-length blocks 
of source data into a so-called “code book” containing a 
constrained number of entries. The fundamental theorems 
of rate-distortion theory, which relate optimal source code 
performance to an information-theoretic minimization, 
involve complicated random coding’arguments [3], [4] in 
general cases. Also, in many situations, block coding 
structures are exceedingly difficult to implement. 
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