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Optimal Edge Detection in Two-Dimensional Images 

Richard J. Qian and Thomas S. Huang 

Abstruct- This paper presents a new edge detection scheme that 
detects two-dimensional (2-D) edges by a curve-segment-based detection 
functional guided by the zero-crossing contours of the Laplacian-of- 
Gaussian (LOG) to approach the true edge locations. The detection 
functional is shown to be optimal in terms of signal-to-noise ratio (SNR) 
and edge localization accuracy; it also preserves the nice scaling property 
held uniquely by the LOG in scale space. 

I. INTRODUCTION 

The difficulties in designing an accurate and robust edge detection 
algorithm for two-dimensional (2-D) images mainly come from two 
sources. First, there are tradeoffs in choosing an operator to pursue 
the best overall edge detection performance. Based on Yuille and 
Poggio’s result [ 111, the 2-D Laplacian-of-Gaussian (LOG) operator 
[6] should be used because it is the only operator that has a 
constrained zero-crossing behavior in 2-D scale space which, in turn, 
lays a necessary foundation for scale space manipulations. However, 
an isotropic operator like the LOG is not optimal in terms of signal-to- 
noise ratio (SNR) and edge localization accuracy (ELA).The Canny 
edge detector [2] has better SNR and ELA than the LOG. However, 
the local extrema of its output may have unconstrained behaviors 
in 2-D scale space [ I l l .  Moreover, the 2-D version of the Canny 
edge detector is obtained by simply extending its one-dimensional 
(1-D) version based on a linear constant cross-section edge model. 
As a result, the 2-D Canny edge detector is not optimal even in 
terms of SNR and ELA, except in the case when the detected edge 
is a straight line having a constant intensity. More recent efforts on 
finding an optimal edge detector can be found, e.g., in [I]  and [lo]. 
Unfortunately, the issue of establishing a more accurate 2-D edge 
model has still been overlooked. 

Second, it is very difficult to find a reliable combining approach 
in 2-D scale space, since the zero-crossings of the second derivatives 
of the filtered 2-D signals generally behave in a much more complex 
way in scale space than the 1-D zero-crossings. Recent work on 
detecting edges in scale space can be found, e.g., in [7] and [9], and 
general discussion on scale space can be found in [ 5 ] .  For a more 
thorough discussion on the general issues related to edge detection, 
see our technical report [8]. 

In this paper, we introduce a new 2-D edge detection functional that 
not only achieves the optimality on SNR and ELA for detecting edges 
in 2-D images but also preserves the nice scaling property of the LOG 
in scale space. We also briefly discuss related issues including edge 
regularization, adaptive thresholding, and scale space combination. A 
more detailed version of this paper can be found in [SI. 

11. OFTIMAL 2-D EDGE DETECTION AND EDGE REGULARIZATION 

Because, in general, the linear constant cross-section edge model 
can represent only a short piece of a 2-D edge in reasonable precision, 
edge detection algorithms assuming such a model usually detect edges 
by extracting edge pixels in a point-by-point manner. The drawbacks 
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Fig. 1. Example 2-D edge and its surface models. (a) Intensity surface 
around a short edge segment in the Lena picture. (b) Constant cross-section 
edge model. (c) Parametric 2-D edge model as described in Section 11-A for 
the edge in (b). (d) Constructed optimal 2-D edge detection functional as 
described in Section 11-B, based on the parametric 2-D edge model in (c). 

of this type of method are twofold. First, it limits the best possible 
edge detection performance in terms of SNR and ELA, as we will see 
in Section 11-C. Second, it directly causes the well-known streaking 
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where v0 ( U )  is a trajectory of parameter v with respect to parameter 
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the image and using the 2-D edge model defined by (2 1), we show 
in [8] that the output SNR of the edge detection functional &edge is 

I f L  f t ( U ) A ( - U )  J_", f , ( - ~ .  u)P(-u,  -v)d7~du 
SNR = ' (2-4) 
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Fig. 2. Histograms of the normalized strengths of the candidate edge seg- 
ments of the Lena picture in two different channels. (a) Histogram in channel 
1 with U 1 2.5. (b) Fitted Gaussian distribution for noise estimation 
corresponding to (a). (c) Histogram in channel 2 with CJ = 3.2. (d) Fitted 
Gaussian distribution for noise estimation corresponding to (c). 

problem in edge detection results. In the following, we introduce 
a more accurate 2-D edge model and develop an optimal 2-D edge 
detection functional based on such a model. We compare the SNR and 
ELA of the new edge detector with that of the Canny edge detector. 

A. Parametric 2 - 0  Edge Model 

Assume that a 2-D edge has a trajectory .'(U) = (xi.). y(u))' in 
the image plane, where U is the parameter of the trajectory. Then 
the intensity surface around the 2-D edge can be modeled as a 
parameterization of the local coordinates (U. U) [3] as follows: 

E(7L,V) = A ( u ) P ( u , v ) ,  -L  5 71 5 L. - D  5 5 D (2-1) 

where 2' is the parametric coordinate in the gradient direction of 
intensity, A(u)  is the amplitude function, P(u ,  w) is the profile 
function of the edge, and [-L,  L] x [ -D ,  D ]  defines the region of 
support of the edge surface. Note that if we let ( . ' (U) be a straight 
line in the image plane and Aiu) be a constant, the above model 
degenerates to the constant cross-section model. For a step edge in 
real image, P(u ,  21) can be modeled as the convolution of a Gaussian 
function and an ideal step function, i.e., 

2a"u) 
-L  5 II 5 L ,  -D  5 U 5 D 

(2-2) 

where the variance a'((.) of the Gaussian determines the scale of 
the edge profile. Note that we have subtracted the mean value of the 
step function before the convolution. The profile functions for other 
types of edges can be found in a similar way as for the step edge. 
See Fig. 1 for an example 2-D edge and its corresponding constant 
cross-section edge model and the parametric edge model. 

and the ELA is 

(2-5) 

If we assume that the profile functions of the 2-D edge have the same 
scale factor ~ ( I L ) ,  by recalling (2-2) the above output SNR and ELA 
can then be simplified as follows: 

and 

The edge detection functional Qcdgc  can be optimized by maxi- 
mizing the SNR and minimizing the ELA. If no additional constraint 
is selected, the optimal solution can be obtained by using the 
Cauchy-Schwartz inequality. Namely, the optimal detection function 
along the edge trajectory f;(u) is 

and the optimal detection function in the gradient direction f,* ( U ,  U) 

for a step edge is 

fi(7L. 2') = P(U, -7J) 

-L  5 U 5 L ,  -D  5 v 5 D .  (2-9) 

The above results are also recognized as the matched filters in 
information theory. 

In practice, the exact locations of edge trajectories in an image 
cannot be known beforehand. That is, indeed, the purpose of edge 
detection. However, the edges may be approximately located by first 
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Fig. 3. LOG zero-crossing contours of the Lena picture at different scales. (a) LOG zero crossing contours at g = 2.5. (b) LOG zero-crossing contours at 
CT = 3 . 2 .  (c) LOG zero-crossing contours at CT = 3.9. (d) LOG zero-crossing contours at CT = 4.6. See Fig. 5(a) for the input intensity image. From the above 
images, it can he seen that a zero-crossing contour that has a cleaner neighborhood usually corresponds to a more salient edge in the picture. 

applying some nonoptimal edge detector, in our case the LOG, to 
the image. In order to determine the true location of an edge, we 
then search for a trajectory V;(U) that maximizes the response of 
the detection functional Qedgc in some neighborhood around the 
corresponding LOG zero-crossing contour. We choose the LOG as our 
preliminary edge detector because it posses the best scaling property 
in scale space. Using the LOG zero-crossing contours as its initial 
conditions, the optimal edge detection functional Qedge therefore 
inherits the nice scaling property from the LOG. Other details on 
implementing the edge detection functional Qedge are referred to in 
[81. 

C. SNR and ELA Improvement over the Canny Edge Detector 
Let E ( u , n )  be an edge with a trajectory G ( u )  to be detected 

in an image. Assuming G ( u )  is curved or E ( u , v )  has nonuniform 
amplitude, then we have 

Namely, the edge detection functional Qcdge has improved the SNR 
and ELA simultaneously over the Canny edge detector by a factor 
of the number defined in (2-10). In the case where E ( u , v )  has a 
curved trajectory G ( u )  but uniform amplitude A(u) ,  the above factor 
is simply the square root of the total length of the edge, i.e., 

The reason that the edge detection functional has better SNR 
and ELA than the Canny edge detector is mainly due to the fact that 
Qedge always detects edges piecewisely while the Canny detector is 
pointwise in the case where edges are curved and/or the amplitude 
along edges is nonuniform. The increased detecting range along edge 
direction improves the output SNR and lowers the probability of 
declaring spurious response as edges; therefore, it improves the ELA. 

D. Edge Regularization 

Due to noise and discretization error, a numerical optimal solution 
of the trajectory vg ( U )  that maximizes the edge detection functional 
&edge may not be continuous or smooth. To improve the continuity 
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Fig. 4. Diagram of the implementation of the 2-D edge detection scheme. 

and/or smoothness, we define energy functionals associated with an 
edge and then minimize the total energy functional of the edge 
to obtain an optimal trajectory that has some desired continuity 
and/or smoothness characteristics for that edge. The mathematical 
forms of the edge energy functionals and the numerical procedure of 
minimizing the total energy functional are similar to that reported in 
[4], and are referred to in [SI. 

111. DETECTING SALIENT EDGES AT DIFFERENT SCALES 

Edges can occur over a wide range of strengths as well as scales 
in real images. In order to generate a complete yet clean edge 
map, some thresholds are needed, and they have to be selected 
adaptively. Detection results from different scales are also needed 
to be combined. We discuss all these issues in this section. 

A. Evaluating the Salience of an Edge 
In order to derive an adaptive thresholding mechanism, we first 

need a procedure to estimate the noise level in an image. Here we 
introduce a global noise estimation approach. In step 1, it computes 
the magnitude of gradient in the Gaussian blurred image for every 
point on the candidate edge segments and assigns the magnitude 
to that point as its strength. Then all the strengths are equalized 
into the full scale of intensity. In step 2, the approach computes the 
normalized strength for each candidate edge segment. We compute 
the normalized strengths for all the candidate edge segments in all 
the channels. A histogram of the computed edge segment strengths 
can then be constructed for each channel. Due to random noise in 
an image, a Gaussian distribution can always be found at the low 
intensity end in the histogram constructed as above. Finally, in step 
3, the approach fits the low-intensity part of the histogram into a 

Gaussian distribution. See Fig. 2 for an example. The mean and the 
variance of the Gaussian reflect the average global noise level and the 
spreading range of the noise. Based on these values, a thresholding 
mechanism is derived [8]. 

To generate edge detection results similar to those perceived by 
human visual systems, we also employ two additional thresholding 
criteria that were selected based on the physiological evidence from 
biological visual systems. The first criterion is based on the phys- 
iological evidence that unbalanced difference-of-Gaussian (DOG) 
operators are employed in the biological visual system. We implement 
this criterion into our edge detection scheme by applying a weighting 
function to the evaluation of the normalized strengths of candidate 
edge segments such that the strength of a candidate edge segment with 
low absolute intensity is suppressed. The second criterion is based 
on the visual behavior of lateral inhibition found in many biological 
visual systems. We implement this criterion by inferring that a zero- 
crossing contour that has a cleaner neighborhood may imply a higher 
probability to be a salient edge in the image. See Fig. 3. 

B. Combining Edges from Different Scales 

Our edge detection scheme generates a final edge map by com- 
bining the detected salient edge candidates from different scale 
channels. Since smaller scale of the detection functional always 
gives better ELA, and only salient edges with high SNR survive 
through the salience test, the final edge map always incorporates 
all the detected salient edge candidates from the smallest scale. The 
combination procedure can then continue to check if there are new 
salient edges in the detection results from larger scales. Our edge 
detection scheme preserves the nice scaling property of the LOG zero- 
crossing contours, and our edge candidates in large-scale channels do 
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Fig. 5. Comparison of the edge detection results on the Lena picture. (a) Input intensity image. (b) Detected edges by the proposed 2-D edge detection 
functional Qedge with CJ = 2.5. (c) Detected edges by the 2-D Canny edge detector with U = 2.5. (d) Detected edges by the Mar-Hildreth edge 
detector with U = 2.5. 

not move far away from the true edge position due to the optimal 
ELA performance of Qedge; this ensures that our scale space approach 
performs reliably on real images. Moreover, our edge candidates in 
each scale channel are curve segments, not points; therefore, om 
method is less sensitive to noise than other existing approaches. 

IV. EXPERIMENTAL RESULTS 

The proposed 2-D edge detection scheme has been implemented 
and tested on a large number of real images. Fig. 4 gives a diagram 
of our implementation. The details are referred to in [SI. The 
computations of the scheme consist of mainly obtaining the LOG 
zero-crossing contours and optimizing the contours. The cost of 
obtaining the LOG zero-crossing contours is mainly the cost of 2- 
D convolutions; the cost of optimizing one contour is mainly the cost 
of inverting a sparse matrix, which is of the order O ( N ) ,  where N is 
the length of the contour, due to the use of a sparse matrix technique 
in our implementation. The details are referred to in [8]. 

In Section 11-C, we gave the closed-form performance comparison 
in terms of SNR and ELA between the proposed 2-D edge detection 
functional &edge and the Canny edge detector. Fig. 5 shows the actual 
edge detection results on the Lena picture by Qedge,  the Canny edge 
detector, and the Marr-Hildreth edge detector, all with = 2.5. 
From Fig. 5,  it can be seen that the edge detection result by Qedge  is 
clean while the edges remain continuous and smooth. On the other 
hand, the result by the Marr-Hildreth edge detector appears to be 
noisy at the selected threshold while the edges have begun to lose 
their continuity. The result by the Canny edge detector appears to 
be better than that by the Mar-Hildreth edge detector. However, 
while its edge map still contains more spurious edges than that by 
Qe+ shown in Fig. 5(b), its detected edges are not as continuous 
and smooth as the detected edges by Qedge either. Fig. 6(a) shows the 
overlapping edge candidates on the Lena picture detected by &edge 

in all seven channels with nmin = 2.5 and nmax = 6.7. Fig. 6(b) 
gives the final edge map of the Lena picture generated by the scale 
space combination procedure implemented in our 2-D edge detection 
scheme. 
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V. SUMMARY 

We have proposed a new 2-D edge detection functional derived 
from an adaptive 2-D edge model. The detection functional is optimal 
in terms of SNR and ELA for detecting edges in 2-D images, 
and preserves the nice scaling behavior of the LOG operator in 
scale space. It detects edges based on edge segments rather than 
edge points. This guarantees the continuity of the detected edges 
and greatly reduces the impact of random noise on the detection 
results. The proposed edge detection scheme also employs an edge 
regularization procedure to enhance desired smoothness and stiffness 
on the detected edges. A global noise-estimation procedure and the 
other two physiologically based criteria have also been introduced to 
provide a robust estimation for the global noise level in the image, 
and to fine-tune the edge detection results to make them similar to 
what is perceived by the human visual system. Finally, a reliable scale 
space combining procedure has been established based on continuity 
in image and the scaling property in scale space of the detected edges. 
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