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Decomposition of Arbitrarily Shaped 
Morphological Structuring Elements 

Hochong Park and Roland T. Chin, Member, ZEEE 

Abstract -For image processing systems that have a limited 
size of region of support, say 3 x 3, direct implementation of mor- 
phological operations by a structuring element larger than the 
prefixed size is impossible. The decomposition of morphological 
operations by a large structuring element into a sequence of re- 
cursive operations, each using a smaller structuring element, en- 
ables the implementation of large morphological operations. In 
this paper, we present the decomposition of arbitrarily shaped 
(convex or concave) structuring elements into 3 x 3 elements, op- 
timized with respect to the number of 3 x 3 elements. The decom- 
position is based on the concept of factorization of a structuring 
element into its prime factors. For a given structuring element, all 
its corresponding 3 x 3 prime concave factors are first deter- 
mined. From the set of the prime factors, the decomposability of 
the structuring element is then established, and subsequently the 
structuring element is decomposed into a smallest possible set of 
3 x 3 elements. Examples of optimal decomposition and structur- 
ing elements that are not decomposable are presented. 

Index Terms - Mathematical morphology, stucturing element 
decomposition, concave boundary. 

I. INTRODUCTION 

HE chain rule of dilation enables a single dilation to be de- T composed into a sequence of recursive dilation,' which is 
viewed as the decomposition of a large structuring element 
into a set of smaller elements [l]. The decomposition of 
structuring elements plays an important role in the implemen- 
tation of morphological operations. For image processing sys- 
tems that have a limited size of region of support, direct im- 
plementation of dilation by a structuring element larger than 
the prefixed size is impossible. Structuring element decom- 
position enables the dilation by a large structuring element to 
be implemented equivalently as recursive dilations by a num- 
ber of smaller elements. In addition, structuring element de- 
composition often speeds up the processing on the systems 
which have no practical limit on the size of region of support. 
- A number of researchers have noted the importance of the 

decomposition of structuring elements [ 1-31, and there have 
been studies in the decomposition of structuring elements, 

' The same is true for erosion. 

Manuscript received Nov. 2, 1992; revised Mar. 1 1 ,  1994. Recommended 
for acceptance by Dr. Edward Delp. 

H. Park was with the Department of Electrical and Computer Engineering, 
University of Wisconsin-Madison. He is now with Samsung Electronics, 
Seoul, Korea, chp@soback.hana.nm.k. 

R.T. Chin is with the Department of Electrical and Computer Engineering, 
University of Wisconsin-Madison, and the Department of Computer Science, 
Hong Kong University of Science and Technology.; e-mail chin@cs.wisc.edu. 

IEEE Log Number P95011. 

each proposing a different algorithm. Zhuang and Haralick [4] 
developed an optimal algorithm for the decomposition of an 
arbitrary structuring element into two-pixel elements, each 
with an arbitrary size of region of support. Xu [5] developed 
an optimal algorithm for the decomposition of convex structur- 
ing elements for systems with a 3 x 3 region of support such as 
the Cytocomputer [6]. Park and Chin [7] proposed an optimal 
algorithm for the decomposition of convex structuring ele- 
ments for 4-connected parallel array processors using the 
number of shifts as the optimization criterion. Several others 
[8-101 have investigated the decomposition of structuring ele- 
ments, but are limited to convex or other restrictive shapes. 

In this paper, an optimal decomposition of simply con- 
nected' binary structuring elements of arbitrary shape into 3 x 
3 elements is proposed. For a given simply connected binary 
structuring element S, the decomposition of S is given by 

S = A' @A' @ 0 A", 

where A' is 3 x 3 or less and simply connected. Such a decom- 
position makes dilation of an image X by S possible using a 
3 x 3 region of support in a recursive manner, given by 

X @ S = (a.. ( X  8 A' ) CB A' ) @ e-.) @ A"). 

However, not all structuring elements can be decomposed into 
3 x 3 elements. Hence, it is required to first determine the de- 
composability of S. If S is decomposable, then an optimal de- 
composition of S is sought for. 

In Section 11, terminologies and notations are defined. In 
Section 111, a number of necessary conditions for decomposi- 
tion are derived to narrow down the set of all images to a 
smaller set which contains all the decomposable images. In 
Section IV, the concept of factorization is introduced which is 
analogous to the factorization of integers. All possible 3 X 3 
prime concave factors are then determined and represented by 
chain code. Finally, in Section V, a procedure based on fac- 
torization is defined to first determine the decomposability and 
subsequently the optimal decomposition. Some examples of 
the optimal decomposition are provided in Section VI. All 
proofs of propositions are presented in Appendix A. 

A binary image is simply connected if it is 8-connected and contains no 

In this paper, the boundary refers to the exterior boundary, i.e., the bound- 
holes. 

ary of hole, if it exists, is not considered. 
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0 : a pixel in concave boundary 

: a pixel in convex boundary 

ISI : a pixel in both concave and convex boundaries 

4- : a starting pixel of chain code 

Chain code : 1 l(22 1 100)22224444444455(7766)(7766) 
Fig. 1. An example of concave and convex boundaries. 

11. DEFINITIONS AND NOTATIONS 

Definition 1: A corner of a connected binary image is a 
boundary pixel3 which is 8-connected to its two adjacent 
boundary pixels by directions i and j in Freeman's chain code 
[ 111 where i # j. Note that a corner is defined by three bound- 

0 
Definition 2: The angle of a corner is the difference be- 

tween the two directions of the three-pixel comer, measured 
from inside the image. A concave corner is a corner whose 
angle is larger than 180". A convex corner is a corner whose 

0 

Definition 3: A boundary segment is the set of connected 
boundary pixels from a convex corner to the next convex cor- 
ner, including the two convex corners. A concave boundary is 
a boundary segment which contains one or more concave cor- 
ners. A convex boundary is a boundary segment which con- 
tains no concave corners. 0 

Note that each concave or convex boundary has one boundary 
pixel common to a neighboring concave or convex boundary. 
Therefore, the chain code of a boundary of connected binary 
image is divided into non-overlapping concave and convex 
boundaries. Without loss of generality, we assume that the 
chain code starts at a convex comer with 0 direction and runs 
counterclockwise. In addition, parentheses are used to distin- 
guish concave boundaries from convex boundaries. See Fig. 1 
for an example of concave and convex boundaries and the 
chain code representation of binary image. 

ary pixels with two distinct directions in chain code. 

angle is less than 180". 

A. Concave Boundaries. There exist an infinite number of 
different concave boundaries, but if the images are restricted to 
the size of 3 x 3, there are only 28 distinct concave bounda- 
ries. Each of the 28 concave boundaries is denoted by Q T ~  as 
defined in Fig. 2. The subscript T denotes the type of concave 
boundary, and i denotes the starting chain code direction of 

boundary. There are five types, i.e., T = U, J ,  15, V, or r. For 
example, Qm denotes concave boundary of Type U, which 
starts with direction 2, and Qm = (2176). The set {eTi} de- 
notes the entire collection of all 28 concave boundaries. 

Fig. 2. There are only 28 concave boundaries for 3 x 3 images. Each Qn de- 
notes a concave boundary. The first subscript denotes the boundary type; the 
second denotes the starting chain code direction. 

Defnition 4 :  An image X is equivalent to an image Y, de- 
noted by X - Y if and only if X and Y are identical except for a 

Definition 5: An image A is a factor of an image S if and 
only if S = A 0 B for some image B. A factor A of S is a trivial 
factor if and only if A - S or A is a one-pixel image. A factor A 
of S is a prime factor if and only if every factor of A is a trivial 

translation. 0 

factor. U 

Definition 5 for binary images is analogous to that of integers. 
For example, 1, 2, 3, 4, 6, and 12 are factors of 12; 1 and 12 
are trivial factors; and 2 and 3 are prime factors. 

Definition 6: A simply connected binary image S is decom- 
posable if and only if S can be represented by 
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entire class of images 

I decomposable images D I 
convex images 7 

Fig. 3. Relationship between F and D. 

where A' is 3 x 3 or less and simply connected. (1) is called a 
decomposition of S,  and is an optimal decomposition of S 
when n is minimized. 0 

.a. ..... ....... a.. ....... ...... ...... ...... + a.. :- 
Fig. 4. Examples of members and non-members of CD. 
(a) SI = Q~11'2Q?446~Qn E @. (b) Sz = Q ~ & l Q , ~ 3 ~ 4 5 Q ~  E CD. (c) S3 = 
OQv11~2Q?446~ 6 CD because sviso # 0 which violates (6). (d) S4 = 
QroQ~112~4~5~ e CD because S ~ J I  # 0 which violates (4). (e) S5 = 
Q , I Q V I I ' ~ Q ; ~ ~ ~ ~  6 CD because the order of Qrl and QVI does not satisfy (2). 
(Q S6 = (177)1*2(443)Q~6~ 6 because (177) and (443) are not members of 
(en]. (+ indicates the starting pixel of chain code for each image.) 

Note that every A' in (1) is a factor of S,  and the decomposition 
of S can be thought of as the determination of its factors for 
dilations, which is analogous to the factorization of integers. 

B. Decomposability. The concept of factorization is used in 
the decomposition; however, not every arbitrarily shaped 
structuring element S is decomposable. Therefore, it is essen- 
tial to first determine the decomposability of S, that is, to ver- 
ify S E D where D is a set containing only all decomposable 
images. 

There are images that are obviously not decomposable. The 
elimination of those images from the set of all images yields a 

smaller set @. Set D and set @ are not identical. Set @ contains 
both "decomposable" and "non-decomposable'' images, while 
D contains only all decomposable images; that is, D c @ as 
depicted in Fig. 3, where convex images are defined as images 
which contain no concave boundaries. For example, Sz in Fig. 
4 is a member of @, but not a member of D because it is not 
decomposable. 

In reality, we are not seeking for the full @ set; instead, for 
each S in question, we first verify S E @ and subsequently 
S E D. If the verification fails, S is not decomposable; there- 
fore recursive implementation of morphological operations 
using S is not possible. In the following, we first define the set 
@ in Definition 7 and show that under this definition of @, 
D c CD in Proposition 4 in the next section. 

Definition 7 A connected binary image S is said to be a 
member of @ if and only if (i) chain code representation of S 
has the form of 

S = Q g  Q E  Q$ QfG0 0 e,";' Q;;' Q:' 1 'I. .. Q z  Q;y e:;;' 7 ';', 
( 2 )  

where the superscripts si and sTi denote the repetition of direc- 
tion i in convex boundary and concave boundary QTi,  respec- 
tively: and (ii) the chain code superscripts satisfy the follow- 
ing: 

sui ( S i -  1 + si- 2 + si-3 + s<j- 1) + S<'-Z) + SV('- 1)) = 0, (3) 
S J ' ( S ' - 1  + s ' - Z + s < i - l ) ) = O ,  (4) 

SL' si-  1 = 0, ( 5 )  
s y i S i - l = O .  (6 )  

cl 
Equation ( 2 )  implies that the boundary of S E @ consists of 
both QTi and convex boundaries which are arranged in a spe- 
cific order. Equations (3), (4), (3, and (6)  constrain the 
boundary types which can be contained in S E @ simultane- 
ously. For example, if S E @ contains QJl, i.e., sJ1 # 0, then 
from (4), so = s7 = sd = 0. Therefore, S cannot contain direc- 
tions 0, 7, and concave boundary Qa. Note that all 3 x 3 con- 
nected images are members of @. See Fig. 4 for examples of 
members and non-members of @. 

A boundary of connected image in @ is uniquely defined by 
its chain code superscripts, where the form of chain code rep- 
resentation is specified in (2 ) .  Therefore, the chain code super- 
scripts are used to represent the boundary of image in @ 
throughout the rest of the paper. 

III. NECESSARY CONDITION FOR DECOMPOSITION 

Again, let D be a set which contains only all the decompos- 
able images. In this section, we shall show that every decom- 
posable image is a member of a, i.e., D c @. 

We consider S = A 0 B, where A ,  B E 0, and B is 3 x 3. 
Proposition 1 shows that chain code representation of S has the 
form defined in (2). Propositions 2 and 3 show that the chain 

A zero superscript means an absence of corresponding convex or concave 
boundary. 
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code superscripts of S satisfy Equations (3)-(6). From these 
propositions, we show in Proposition 4 that every decompos- 
able image is a member of @. The following gives the details. 

Proposition 1: Let A, B E @, and B be 3 x 3. If S = A Q B, 
then chain code representation of S has the form defined in (2). 

0 

In Proposition 1 ,  it is shown that dilation of an image in @ by a 
3 x 3 image does not create concave boundaries other than 
those given in (2). Furthermore, it shows that the order of con- 
vex and concave boundaries of S conforms to that in (2). How- 
ever, Equations (3)-(6) must also be satisfied to prove that S is 
a member of @, which is given by the following propositions. 

Proposition 2: Let A ,  B E @ and B be 3 x 3. Let S = A  0 B.  
(1) If S contains Qui, then 

au; + bu; # 0, (7) 

+(b;-l  +bj-2+bj_3+b<;- l )+b~j i_2)+bv( j -1) )=0 .  (8) 
(a;- 1 + ai-2 + a;-3 + U<'- 1) + U 6 j - 2 )  + Uv(;- 1)) 

(2) If S contains Qj;, then 

U j ,  + bj; # 0, (9) 
(a; - 1 + a; - 2 + a<; - 1 ,) + (b; - 1 + b' - 2 + b<j - I)) = 0. ( 10) 

(11) 
a;- l+b;- l=O.  (12) 

(3) If S contains QLj, then 

u L ~  + bL; f 0, 

(4) If S contains Qvi , then 

(ai + ai-2 + a,; + U < j - 1 )  + avj) 
+ (b; + b;-2 + b,; + b4j-1) + bvj) # 0, (13) 

a j - l + b j - l = O .  (14) 

( 5 )  If S contains Qri, then 

(a; + +a,;) + (b; + bi-l + bri) # 0. (15) 

(6) If S contains convex boundary of direction i, then 

a; + bl f 0. 0 (16) 

Proposition 3: Let A, B E 0, and B be 3 x 3. If S = A Q B, 
0 

Proposition 3 together with Proposition 1 prove that S = A 0 B 
E 0, if A, B E @, and B is 3 x 3 because dilation between 
connected images produces a connected image. In other words, 
CD is closed under dilation by 3 x 3 image. Now, we are ready 
to show that every decomposable image is a member of 0. 

then Equations (3)-(6) of S are satisfied. 

Proposition 4: If S is decomposable, i.e., S = A' 8 A' 8 ... 
@ A", where A' is simply connected and 3 x 3 or less, then 
s E CD. o 
Using Proposition 4, S is said to be non-decomposable if S is 
not a member of @. Hence, non-decomposable images can be 
identified using their chain code representations. For example, 
S3 - Sn in Fig. 4 are not decomposable. However, it should be 

noted that not all elements of @ are decomposable since 
Proposition 4 only gives the necessary condition, but not the 
sufficient condition. 

Since non-decomposable images are of no interest in this 
paper, only members of @ will be considered hereafter. We 
need, however, additional conditions on S to identify D in @ 
because @ also includes non-decomposable images. The de- 
termination of prime factors in @ is used for this purpose and 
is discussed in the next section. 

IV. DETERMINATION OF PRIME CONCAVE FACTORS 

This section describes the determination of the 3 x 3 prime 
concave factors in @. Using these prime factors, the reduction 
of @ to D is possible, which is decribed in Section V. 

Because dilation is a union of shifted images, concave 
boundaries may disappear after dilation. First, the relationship 
between dilation and chain code is determined in Proposition 5 
when none of concave boundaries are removed after dilation. 
In fact, the removal of a particular QTi in A due to dilation by B 
depends on B's boundary types. The dependency on B of each 
boundary type in A is then determined in Proposition 6, from 
which properties of chain code required to determine factors 
are derived (Proposition 7). Finally, conditions for the deter- 
mination of factors are defined in Proposition 8, and all 3 x 3 
prime concave images are listed in Table I. The following 
gives the details: 

Proposition 5: Let A, B, S E 0, and B be 3 x 3. If 
S = A Q B and all concave boundaries in A and B are contained 
in S (i.e., none of concave boundaries in A and B are re- 
moved), then si = a; + bi and ST; = UT; + b ~ i .  0 

The converse of Proposition 5 is not true in general because 
chain code specifies only boundary. However, if we consider 
only boundaries of A 0 B and S, the converse is true, which is 
stated in Proposition 7. To derive Proposition 7, Proposition 6 
is necessary. 

Proposition 6: Let A, B, S E @ and S = A Q B. If UT; # 0 
but sTi = 0, that is, A contains QT; but S does not, then the fol- 
lowing conditions for B must be true for each type of concave 
boundary QTj in A which is removed: 

b;- 1 + b;- 2 + b;-3 + b<;- 1) + b<j- 2) + bq;- 1) # 0 
for Type U,  (17) 

b j - l + b j - 2 + b ~ j i - l ) # 0  forTypeJ, (18) 
bj-l f 0 for Type L and V (19) 

0 

Proposition 7: Let A, B, S E @ and B be 3 x 3. If si = ai + b; 
and sTj = aTj + bTj, then the boundary of S is identical to the 

0 

For the simple case when S and B are convex and S is simply 
connected, it has been shown that if si 1 b; and A 8 B is simply 
connected where A is a convex image defined by chain code 
superscript a; = si - b;, then S = A 0 B ;  B is referred to as a 
factor of S [7 ] .  Now, if S and B are concave, similar chain 
code arithmetic involving S = A Q B is defined using Proposi- 

boundary of A 0 B.  
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TABLE I. 
ALL 3 X 3 PRIME CONCAVE IMAGES CONTAMING CONCAVE BOUNDARIES Qm, Qfi, Q J ~ ,  Qm, Qm, Qm, AND QR1 ARE GIVEN IN CHAIN CODES. 
CONCAVE IMAGES CONTAINING QM, Qa. Qu, AND QpI FOR i = 2,4,6 ARE OBTAINED BY ROTATING Qm, QJO, Om, AND BY i X 45", LE., BY 

INCREASING EACH CHAIN CODE BY i UNITS, RESPEXXVELY. CONCAVE IMAGES CONTAINING &, QN, AND QRi FOR i = 3,5,7 ARE OBTAINED BY 
ROTATING QJ,, em, AND BY (i - 1) X 45", I.E., BY INCREASING EACH CHAIN CODE BY (i - 1) UNITS, R E S P ~ E L Y .  

QJ 1 

QJ 1 2245 
QJ 1 2346 
QJ I 235 

QJ 1 22426 

Qv 1 

Qv I 2242 Qv7 

Qv I Z 2  Qd2 
Qv I 22 Qvs Qv, 

Qv 1 2252 
Qv 1 234Qv7 

QV I 224Qr 6 

QV I 22 Qr 56 

Q v 1 23Qr 6 

Q ~ 1 2 Q r 4 6 ~  

QV I 2Qr4 Q V ~  

~ V 1 2 4 ~ 6  

Qv 1 245 

Qv I Q ~ 3 4 ~ 6 ~  

Qv 1 Q d 2 Q v 7  

Q V I  Qv3456 

Qv 1 Qv3 Qv5G2 

Qv 1 Qv3 Qvs Qv7 

Q V I  Qv34Qr6 

Q V I  Q ~ 3 Q r 5 6  

Q V I  

Q V I  Qr3462 

Q V I  Q r 3 4 Q ~ 7  

Qvl er356 
Q V ~  Qr3Qr6 

Qv I 3262 
Qv 1 32 Qv7 

Qv 1 346 

Qv135 

Qr 0 

Qr 0 2 ~ 4 5  
Q r 0 2 ~ Q ~ 5 6  

Qr 0 2 ~  Qr 5 

er0235 
Qr d2Qr 4 6 
er 0242 

Qr o Q V ~  42 6 
Q r 0 Q ~ 3 4 5  

Q ~ o Q v ~  Q V S ~  

Qr0Qv3Qr5 

Qr0Qr35 

Qr o Qr 3 46 
~ ~ 0 3 ~ 6 '  

Qr 034 

Qr I 

Qr 1 2 4 2 Q ~ 7  

Qr I 24Qr 6 

Qr 1 2 Q v 5 6 ~  
Qr 1 ~ Q V S  Q V ~  

Qr 12Qr56 
e,.] Z2 

Qr I 3462 
Qr 134Qv7 

Qr I 356 
Qr 1 3Qr 6 

Qr I Qr462 

Qrl Q r 4 Q ~ 7  

er 1 426 

Qr 145 

tion 7 and Proposition 8. concave boundary in a particular 3 x 3 factor is removed, this 
factor can be replaced by a different one such that all concave 

Proposition 8: Let s, B E @, B be 3 x 3, and s be simply 
connected. If (i> superscripts ai = Si - bi and ari = STi - h i  de- 

boundaries in the new one are contained in s. ~ i ~ .  5 shows an 
example of ~ r ~ ~ ~ ~ i ~ i ~ ~  9: in A' and en in ~2 are not con- 

fine valid chain code for an image, and (ii) A @ B is simply 
connected where A is defined by ai and uTi, then S = A @ B and 
B is a factor of S. 

tained in s. Then, A I  and AZ replace 
such that all 
s. 

and A ~ ,  respectively, 
in boundaries in AI and ~z are 

Note that Proposition 8 only gives sufficient condition for 
factors, and there are many factors which do not satisfy 
Proposition 8. However, factors which do not satisfy Proposi- 
tion 8 are not essential to the decomposition. To justify this ar- 
gument, we need to use Proposition 9. 

Proposition 9: Let S,  A, B E @, B be 3 x 3, and S be simply 
connected. Let S = A 63 B. If bn # 0 and sTi = 0, that is, B 
contains QTi but S does not, then there exists a B such that S 
= A @ B and all concave boundaries in B are contained in S. 0 

Proposition 9 implies that if S is decomposable, then S can be 
represented by S = A' G3 @ A", where all concave bounda- 
ries in A', i = 1, 2, . . a ,  n are contained in S, because whenever 

Suppose that S = A' @ .-. 8 A" and A' does not satisfy 
Proposition 8. After replacing each A' by A' such that all con- 
cave boundaries in Ai are contained in s, we have S = A' @ . - *  

CB A". Let tiz A" = c E CP. Then, from Proposition 5 ,  si 
= ci + d: and sTi = cTi + d&. Therefore, A' satisfies Proposition 
8. In general, any decomposable S can be decomposed such 
that all factors satisfy Proposition 8. Moreover, A' and A' have 
identical contribution to the decomposition except for the 
number of pixels involved. But, the criterion of our decom- 
position is the number ofA3 x 3 elements and not the total 
number of pixels. Thus, A' and A' can be thought of as an 
identical factor for our criterion. Therefore, those factors 
which do not satisfy Proposition 8 need not be considered, and 
only factors which satisfy Proposition 8 are essential to the de- 

... 
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0 0 . 0 . .  
0 0 . 0 . .  0 .  ..... .... 
0 .  

s =  0 0 + 0 0  = O+O Q :To +0 = A ' Q A 2 Q A 3  
0 0 .  0 

Fig. 5. Proposition 2: Replace A' by .&I and A' by A'. Before replacement, boundaries Qm in A' and Q.n in A' are not contained in S. After re-placement, 
boundaries Qrl and Qn are contained in S. (+ indicates the origin.) 

composition. V. DECOMPOSITION INTO 3 x 3 ELEMENTS 
Now, we propose a procedure to determine all necessary 

3 x 3 prime concave factors of simply connected S E Q,. There 
are a limited number of 3 x 3 prime images which contain a 
particular concave boundary type - Type U has 4 distinct 
3 x 3 prime images; Type J has 4; Type L has 2; Type V has 
28; and Type r has 14. These images are given in Table I in 
chain codes. For each concave boundary of a given S, Propo- 
sition 8 and Table I are used to determine the 3 x 3 prime con- 
cave factors of S. For example, if S has concave boundary Q,, 
then all 14 prime images in the last column of Table I are ex- 
amined to identify the 3 x 3 prime concave factors which con- 
tain Qrl. Finally, we have another necessary condition for de- 
composition given by Proposition 10. 

Proposition IO: If S E Q, is decomposable, then for each 
concave boundary QTi in S, there exists at least one 3 x 3 con- 

U cave factor of S which contains the same QTi 

Note that even when every concave boundary in S has its cor- 
responding 3 x 3 prime concave factors, S is not always de- 
composable. See Fig. 6 for an example. This implies that the 
converse of F'roposition 10 is not true; it gives only a neces- 
sary condition for decomposition. 

The determination of all 3 x 3 prime concave factors of S 
provides a simple procedure to determine the set D and subse- 
quently the decomposition of S E D, which is described in the 
next section. 

0 
0. .  .... 

+:::: 
0 

0 0 
0. .  0 .  

0 0 

S E  <f, All 3 x 3 concave factors of S 
Fig. 6. S = Q,0Q~12~35 'Q6. Each concave boundary in S has a corresponding 
3 x 3 concave factor, but S is not decomposable. (+ indicates the starting 
pixel of chain code.) 

In this section, a procedure to determine the decomposabil- 
ity of an image in @ is developed. Such a decomposable image 
is a member of D. This procedure involves an existence test of 
the solution of a set of constrained linear equations. In addi- 
tion, the decomposition of S E D into 3 x 3 elements is de- 
termined by solving the same linear equations. 

In the previous section, we found all necessary 3 x 3 prime 
concave factors of a simply connected S E 0. Let those fac- 
tors be the set { A i } .  If S is decomposable, i.e., S E D, then S is 
given by 

S =  C' CB C? 69 e * *  @ C"@B,  

where C E { A i } ,  and B is a convex factor of S which is guar- 
anteed to be decomposable [ 5 ] .  It remains to check whether or 
not such selections of C's and B exist (if they exist, then 
S E D), and to determine these factors if S E D. Now, we 
formulate this problem into two constrained linear equations, 
one for concave boundaries and one for convex boundaries. 

Suppose S E Q, consists of (i) m distinct concave bounda- 
ries, V l ,  V,, . e - ,  V,, that is, vkis one of QTi where sTi # 0, (ii) 1 
distinct chain code directions in the convex boundaries, dl, d2, 
. a - ,  dl, that is, dk is one of the chain code directions i where 
si # 0, and (iii) n distinct 3 x 3 prime concave factors, A', A2, 
- . e ,  A", from Proposition 8 and Table I. For example, for 
S = Q,122Qt.4463Q,.7, vk, and dk are constructed as follows: VI 
= Qn, V, = Qr4, V3 = Qr7, d,  = 1, d2 = 2,  d3 = 4, and d4 = 6. We 
define two matrices 0 and R, where 0 is m x n and R is 1 x n, 
as follows: 

[ @ I u  = number of Vis  in A' 
[sLlV = number of di's in A'. 

To determine 0 and R, each factor A' is examined and the 
counts of V i s  and d:s in A' are determined as entries of the 
matrices. Furthermore, we define two vectors, Y of size m and 
Z of size I ,  as follows: 

[YIi = number of Vi's in S 
[ZIi = number of d;s in S. 

Vectors Y and Z are constructed from the chain code represen- 
tation of S. Finally, a variable vector is defined given as 
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O =  

T 

x =  [ X ' X ,  ... x,] , 

-1 11 10000000000000000 ' 

00001111000000000000 

00000000111100000000 

00010000000011100000 

01000010000000011000 

10000100000100000100 

000010oO010001000010 

- 0oO00000100010001001 

where xi's are non-negative integers. 

Proposition 11: A simply connected S E CD is decompos- 
able if and only if there exists an X such that 

OX = Y, 
ax I z, 

and x1 A' 8 ... 8 xJ" 0 B is simply connected, where xiA' is 
xi-fold dilations of A' and B is a convex factor defined by chain 
code superscript bi = [Z - RX]i. If such an X exists, then the 
decomposition of S is 

S = xlA' @ x2A2 8 ... 8 xJ" 8 B. (22) 
0 

To find an X satisfying Proposition 11, we first solve Equa- 
tions (20) and (21), then verify that xlA' 8 ... 0 xd" 8 B is 
simply connected. Note that if at least one of A' with xi 2 1 or 
B is 4-connected, then xlA1 8 ... 8 xJ" 8 B is always simply 
connected [7]. 

To optimize the decomposition in (22) for a particular X, a 
procedure adopted from [5] given in Appendix B is used. 
However, X satisfying Proposition 11 is not unique, thereby 
each X gives a corresponding decomposition of S (Equation 
(22)) and a corresponding optimized result. To guarantee an 
optimal decomposition of S, the decomposition of S in (22) for 
each X must be optimized by the procedure in Appendix B, 
and the one with the smallest number of 3 x 3 elements will be 
selected for the optimal decomp~sition.~ See Example 2 in 
Section VI for a detailed illustration. 

The search for the optimal decomposition among all possi- 
ble solutions needs not be exhaustive. There exists a lower 
bound on the number of 3 x 3 elements of the decomposition 
given by m a {  knax(S)l, knin(SY9 IYmax(S)lt IYmin(S)I 1, where 
xmax(S) = max{ x I (x, y )  E S } and the other three terms are 
defined accordingly [51. Therefore, when the decomposition 
from a particular X yields this lower bound, an optimal de- 
composition is guaranteed and the search terminates. 

The procedure for an optimal decomposition of arbitrarily 
shaped S into 3 x 3 elements is summarized in the following: 

Procedure: Optimal Decomposition of S into 3 x 3 Ele- 
ments 

1) Verify S E CD. If not, S is not decomposable, i.e., S 
2) Determine all 3 x 3 prime concave factors { A ' }  of S using 

Proposition 8 and Table I. If no 3 x 3 prime concave 
factor can be determined for any concave boundary in S, 
thenS qi D. 

3) Define 0, Q, Y, and Z. Solve OX = Y and SZX I Z for X, 
a non-negative integer vector. 

D. 

The number of solutions is finite because the solutions are restricted to 
non-negative integers. 

4) If X exists and xlA1 8 ... 8 XJ" CD B is simply con- 
nected, where the convex factor B is given by chain code 
superscript bi = [Z - 
8 xd" @ B. Otherwise, S qi D. 

tion procedure in Appendix B. 

then S E D and S = xlA1 8 

5) Search for an optimal decomposition using the optimiza- 

VI. EXAMPLES 

Example I :  A structuring element used most often in the 
image processing is the circle. Suppose that S is a circle given 
by S = Q~02Qr1Qr~22Qr3Qr442Q,5Q~62Qr7 as in Fig. 7(a). 

It has been verified that S E CD. Next, we find all the 3 x 3 
prime concave factors for each concave boundary of S using 
Proposition 8 and Table I. We can see that each concave 
boundary has at least one factor, and there are 20 such factors 
in total. A' is assigned to each of those factors as in Fig. 7(b), 
and Vi and di are constructed as follows: 

00000000010112121210 
21101100000000001122 
0021 100221 1010000001 ' 
01010121002100210000 1 

Y = [ l  1 1  1 1  1 1  1 I T a n d Z = [ 2 2 2 2 l T .  

One possible X satisfying Proposition 11 is 

Therefore, the decomposition of S exists and is given by 

S = A' 0 A6 8 A'' 8 A" 

After optimization (Appendix B), the decomposition of S 
given in Fig. 7(c) results. Since this decomposition requires 
four 3 x 3 elements and the lower bound = max{ lxmax(S)l, 
lxmin(S)I, lymax(S)l, lymin(S)I } = 4, this is an optimal decomposi- 
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0 . .  
0 0 . 0 0 . .  
0 0 . 0 0 . .  ......... ......... 
0 0 . 0 0 . .  
0 0 . 0 0 . .  

0 . .  

s =  ....+.... 

0 .  0 .  0 .  0 .  0 . .  0 .  
0 . .  0 . .  0 . .  0 .  0 .  0 . .  0 . .  0 . .  0 0 

0 0 0 0 .  0 0 0 0 0 .  

A '  A 2  A 3  A 4  A 5  A 6  A 7  A 8  A 9  A" 

0 0 0 .  s =  .+. Q .+. Q go Q + 
0 0 .  0 .  

0 0 0 .  0 .  

0 0 0 .  0 .  
S =  O+O @ e+. Q + Q + 

(4 
Fig. 7 .  Example 1: (a) A structuring element, S. (b) All 3 x 3 prime concave factors, A,. (c) and (d) Two possible optimal decompositions of S. (+ indicates the 
origin.) 

tion of S .  
In general, the optimal decomposition into 3 X 3 elements is 

not unique, since the linear equations are underdetermined. To 
illustrate this, another X satisfying Proposition 11 is sought 

A' is assigned to each of those factors as in Fig. 8(b), and Vi 
and di are constructed as follows: 

VI = QLO, V2 = Qr4, V3 = Qd, 
for, resulting in dl = 0, dz = 1, d3 = 2, d4 = 4, ds = 6 .  

In this case, the decomposition of S is 

S = A '  @ A 7  @ A ' 0 0 A ' 3 .  
After optimization (Appendix B), the decomposition in Fig. 
7(d) results. This is also an optimal decomposition because it 
requires four elements. 

Then, 

Example 2: Suppose that S is given by S = 
Q , ~ O ~ 1 2 ~ Q ~ ~ 4 ~ Q h 6 ~  as in Fig. 8(a). It has been verified that 
S E a. Next, we find all the 3 x 3 prime concave factors for 
each concave boundary of S using Proposition 8 and Table I. 

- 
01210- 
01001 

02100 

Y = [ l  1 1]'andZ=[314321T. 

One possible X satisfying Proposition 11 is 

x =  [ l o  1 1  03'. 
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0 0. .  0 .  

O =  010 , a= [::I (d) 
Fig. 8. Example 2: (a) A structuring element, S. (b) All 3 x 3 prime concave 
factors, A'. (c) Sub-optimal decomposition of S. (d) An optimal decomposi- 
tions of S. (+ indicates the origin.) 
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- 

101 
111 
110 
000 - 

.... 
0 0 . 0 . .  

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 ..... .... s =  ...+... 

O =  0110000 ,a= [:::I 

0 . .  0 0 0 
0 0. .  0 0 0 
0 0 .  0 . .  0 .  0 

A'  A 2  A 3  A 4  A 5  

001001 1 
1212110 , 
1000101 
1001 010 - 

0 .  .... 
0 0 . 0 . .  

s =  .+.. 
0. .  

0 .  

0 .  0 .  0 
0 0 .  0 

0 0 0 

A' A 2  A 3  

(b) 
Fig, 9. Example 3: S is not decomposable. (a) A structuring element, S. (b) All 
3 x 3 prime concave factors, A'. (+ indicates the origin.) 

(b) 

0. .  s =  +. @ .+ @ : @ +. 
0 0 . .  0 .  0 

Therefore, the decomposition of S exists and is given by 

S = A 1  @ A 3  @ A 4  8 B, 

Y = [ 1 1 1 I T a n d Z =  [ 1 1 3  1 11'. 

A non-negative integer solution for OX = Y and SZX I Z does 
not exist. Therefore, the decomposition of S does not exist, 
i.e., S er D. 

where B = 146. After optimization (Appendix B), we have the 
decomposition given in Fig. 8(c). Since this decomposition 
requires four 3 and the lower bound = 

guaranteed to be an optimal decomposition, therefore another 
X is considered. 

Example 4: S is given by S = Q ~ 0 ~ 1 ~ 2 ~ 3 ~ 4 Q u Q n  as in Fig. 
10(a). It has been verified that S E @, and all 3 x 3 prime con- 

factor as in Fig. 10(b). vi 
max { kmax (S)I, k i n  (S)I, IYm, (91, bmin (SI } = 3, this is not cave factors of s are determined and A' is assigned to each 

di are constructed as follows: 

Another X satisfying Proposition 11 is Vi = QLO, V2 = QLS, V3 = Qn, 
dl = 0, d2 = 1, d3 = 2, d4 = 3, d5 = 4. 

x = [ l  0 1 0  1IT. 
Then, 

In this case, the decomposition of S is r02122111 

S = A '  @ A 3  $ A 5  0 B. 

where B = 0246, and the result of optimization is given in Fig. 
8(d). Since it requires three 3 x 3 factors, it is an optimal de- 
composition of S. 

Example 3: Suppose that S is given by S = QnOQrl 1 3 3 4 5 Q ~  
as in Fig. 9(a). It has been verified that S E @, and all 3 x 3 
prime concave factors of S are determined and A' is assigned to 
each factor as in Fig. 9(b). Vi and di are constructed as follows: 

Y = [ l l  1 I T a n d Z = [ 2 2 2 2 1 ] ' .  

One possible satisfying Proposition is 
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- 
1 loo00 
012210 
100011 
01 1001 
001010 - 

11 

, 

6 6  
.a. 

.....a s =  e.... . .+.a . . 
a... 
.a. 

0. .  ..... 
0 0 . 0 0 . .  ..... .... 

0 .  

s =  ...+.. 

0 .  . . .a . 0 .  . . . . a . . 
a 0..  .a ..a 0..  a. a. 

A '  A 2  A 3  A 4  A 5  A 6  A' 

(c) 
Fig. 10. Example 4: (a) A structuring element, S. (b) All 3 x 3 prime concave 
factors, A'. (c) An optimal decomposition of S. (+ indicates the origin.) 

x = [ l  0 1 0 0 0 1)'. 

Therefore, the decomposition of S exists. After optimization 
(Appendix B), the decomposition given in Fig. 1O(c) results, 
which is an optimal decomposition of S since it requires four 
elements, the lower bound. 

Example 5: S is given by S = QV1Q~z3242526Q,77 as in Fig. 
1 l(a). It has been verified that S E a, and all 3 x 3 prime con- 
cave factors of S are determined and A' is assigned to each 
factor as in Fig. 1 l(b). Vi and di are constructed as follows: 

Then. 

o= 001111 , R =  611 
Y=[ 1 2 1 I T a n d Z = [ 2 2 2 1  13'. 

One possible X satisfying Proposition 11 is 

x =  [ 1 0 0  1 0  1 IT, 

and B = 37. After optimization (Appendix B), the decomposi- 
tion given in Fig. 1 l(c) results. This X is found to be the only 
solution for the linear equations (Equations (20) and (21)), so 

0..  0 . .  
0 0 .  0 .  0 

0 .  0 .  0 0 

A '  A 2  A 3  A 4  

0 .  0 
0 .  0 

0 0 

A 5  A 6  

Fig. 1 1 .  Example 5: (a) A structuring element, S. (b) All 3 x 3 prime concave 
factors, A'. (c) An optimal decomposition of S. (+ indicates the origin.) 

it is an optimal decomposition, even though it requires more 
elements than the lower bound = max(Ix,,(S)I, k,,,in(S)l, 
bmax(s)l, IYmin(S)I 1 = 3. 

VII. CONCLUSIONS 

In this paper, we proposed an algorithm for optimal decom- 
position of arbitrarily shaped simply connected binary structur- 
ing elements into 3 x 3 elements. We first derived necessary 
conditions for dqcomposition and reduced the large image set 
to a smaller set by eliminating some images which are not de- 
composable. Next, we determined all the 3 x 3 prime concave 
factors for a given image using chain codes and formulated the 
decomposition problem into two constrained linear equations. 
The solution of the linear equations determines the decompo- 
sition of the image. 

The main objectives of the decomposition of structuring 
elements are (i) to implement morphological operations on 
systems with small region of support by replacing the required 
large structuring elements with small elements, and (ii) to 
minimize the cost of the operation on systems with no practical 
limit on the size of region of support. The decomposition de- 
rived in this paper is optimized with respect to the number of 3 
x 3 elements. Therefore, it provides an optimal implementa- 
tion of morphological operations for systems which are based 
on a 3 x 3 region of support, such as the Cytocomputer. It also 
provides efficient implementation of morphological operations 
for systems where computational cost depends on the number 
of shifts, such as parallel array processors since the decom- 
position reduces the amount of shifts. 
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,,-- 

Bowever, many structuring elements S are not decomposable 
into 3 x 3 elements, and additional processings must be first 
applied to S in order to partition S into a union of B‘ given by 

where 
n 

i=l 
X O S =  U (XCBB’) .  

If each B’ is decomposable, X 8 S can then be implemented 
after each B’ is decomposed into 3 x 3 elements. However, the 
partition is not unique and an optimal partition with respect to 
the number of 3 x 3 elements is yet to be investigated. 

APPENDIX A: PROOFS OF PROPOSITIONS 

In all figures in Appendix A, 0 ,  x and indicate a pixel (l), 

a non-pixel (0) and don’t-care of a given image, respectively, 
and + indicates the origin. The value (1 or 0) at a location 
marked by a small letter is specified in each image. 

Proof of Proposition 1 :  To prove this proposition, we need 
to show that the boundary of S consists of QTi and convex 
boundaries, and these boundary segments are arranged in a 
specific order defined in (2). Since B is 3 x 3, the value at each 
location of S depends on a particular 3 x 3 local region of A ,  
assuming that B contains the origin6. Therefore, the shape of 
each boundary segment of S depends on a particular local re- 
gion of A and the shape of B.  If any possible configuration of 
pixels in any local region of A ,  when dilated by any B, results 
in the boundary of S which satisfies (2) ,  then no unsatisfactory 
boundary can stem from A 0 B, which completes the proof. 
Instead of examining all possible local regions in A and all 
possible B, we only prove the following case - a local region 
containing Quo in A is dilated by B containing Qm. Other cases 
can be proved in a similar way. 

Suppose A contains Quo. Then, since A E 0, from (3), the 
neighborhood of Quo has the constraint shown in Fig. Al(a), 
where x, y, and z are don’t-cares. Suppose B contains Qm as 
shown in Fig. Al(b). Since 

where (B),  = { a + b I b E B } ,  a particular location p is a pixel 
of S if p E (B) ,  for some a E A .  In addition, p is a don’t-care 
of S if p e (B) ,  for any a E A ,  but p E (B),, for a don’t-care a‘ 
of A, because the value of a’ determines whether p E S or not. 
All other locations are non-pixels of S because they are not 
included in (B) ,  for any pixel or don’t-care a of A. In this way, 
a portion of S,  which stems from Quo in A and Qm in B, is 
constructed and shown in Fig. Al(c). 
Now, we shall determine the shape of boundary of this region 
of S depending on the values of don’t-cares in A. Consider 

‘ The origin can be located arbitrarily because the location of origin has no 
effect on the shape of the boundary. 

x x x x . +  
X X e . . .  
X X X X . .  
XX... . 
x x x x e .  
x x e . .  

x x y z . .  
X X X X X .  +.. 
X X . . . .  x x e  

X X X X . .  

X X X X . .  X X .  

x x x x . +  

x x e e . 0  
X X X X ~ .  

xx...e 
x x x x e e  
X X V W . .  
X X X X U .  

X X . . . .  

X X X X . .  

X X C . . .  
X X X X . .  

(4 (b) (c) 
Fig. A l .  Proof of Proposition 1. (a) A local region of A contains Qw. x, y ,  z 
are don’t-cares. (b) B contains Qu. (c) A portion of 
S = A  CB B results from Quo in A and Qu in B. U, v, w are don’t-cares. 

X . . . .  X . . . .  X X . .  

x x x x  

x x x x  

X X U V .  x x + *  
x x x x w  X X X X .  x x + *  
x x t z .  X X . . .  
X X X X .  X X X X m  X X . .  

Fig. A2. Proof of Proposition 2. (a) S contains Qw. U, v, w, z, and tare pixels 
of S. (b) B has a pixel at (0,O). (c) A has a pixel at (0,O). 

three don’t-care locations x, y, and z in Fig. Al(a). When y E 

A, then z E A since A is connected. In addition, since B 
contains the origin, A c S ,  so v, w E S in Fig. Al(c). In this 
case, the boundary of S becomes QmQu0 regardless of the 
value of x .  If y A, then v e S because there exists no pixel 
or don’t-care a of A such that v E (B),. Therefore, when y @ A 
and z E A, the boundary becomes QmQm because v S and 
w E S.  If z e A, then x e A by the following reason: Since A 
is connected, x must be connected to Quo in A. However, since 
A cannot contain concave boundary other than QTi, it is im- 
possible to connect x to Quo in A if z e A. Therefore, z @ A 
implies x e A.  Also, x @ A implies U e S because there is no 
pixel or don’t-care a of A such that U E (B),  when y, z e A. In 
this case, the boundary becomes QuoQm. In summary, for any 
possible combination of the values of x, y, and z in A, the 
boundary of S ,  which stems from Qm and its neighborhood in 
A and Qm in B, consists of QTi. Moreover, QTi in S is arranged 
in the same order as that in (2). Note that the rest of the 
boundary of S is not influenced by QUO in A because B is 3 x 3. 
This completes the proof for the case when a local region 

0 

Proof of Proposition 2: We shall prove Equations (7) and 
(8) when i = 0 only. All other cases can be proved in the same 
way. 

(i) (Proof of (7)). Suppose S contains QW. Since chain code 
of S has the form in (2) from Proposition 1, S has the con- 
straint shown in Fig. A2(a) around Qm. To prove (7), we shall 
show that if auo = 0, then buo # 0. Suppose aUo = 0. Since U E 
S ,  there must exist (x, y) E B such that U E ( A ) ,  y), and let (x, 
y) = (0,O) arbitrarily. Then, B has the constraint shown in Fig. 

containing Qm in A is dilated by B containing Qm. 
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X X X . .  
X X X X .  
X X . . .  
X X X . .  

X.... 
X X X . .  

X.... 
X X X . .  
X... 
X X X . .  

X X . . .  
X X X X .  
X X X . .  

X U . . .  
X X X . .  

X V . . .  
X X X . .  

X... 
x x x . .  
X.... 
X X X ”  

X... 
X X X . .  
X W .  . 
X X X . .  
X X . .  

X X X .  
X X X .  
X X . .  
X X . .  

X... 
X.. . 
x.. 0 

X X . .  
X X . .  
X X X .  
X X X .  

X . . .  

X U . .  
X V .  
X W .  
X... 
X.. 0 

X @ o e  
X X .  
x y  
x z . .  
X . . .  

(4 (b) (c) (4 
Fig. A3. Proof of Proposition 5. (a) A contains exactly two QmO’s. (b) S con- 
tains at least two Qw’s, s ~ )  2 2. U, v, w, and x are don’t-cares. (c) A contains 
exactly two 6-directions, ah = 2. (d) S contains at least two 6-directions, S6 2 
2. U, v, w,  x, y. and z are don’t-cares. 

A2(b) because (A), for any location p marked by x in Fig. 
A2(b) is not a subset of S, which is a contradiction to 
S = A 0 B. Since we assume (x, y) = 0, 0), A c S and U E A ,  
but t e A because A does not contain Quo. Thus, there must 
exist (x’, y’) E B such that (x’, y’ # (0, 0) and t E (A)(,,, y’). 

Now, we determine the possible locations of (x’, y’). First, 
y‘ I 0; otherwise, (A)(,,, y‘) must contain both t and another pixel 
whose y-coordinate is greater than that of U using only QTi, 
which is impossible under the constraint on S in Fig. A2(a). 
Second, since r E (A)(x,, y’), if we shift both sides by (x’, y’), we 
have (t,  - x’, ty - y‘) E (A),O,~) = A .  Finally, since B is 3 X 3, 
I x’ I I 2 and I y’ I I 2. Then, we can show that only (x’, y’) = 
(0, -2) satisfies all three conditions defined above. Therefore, 
(x’, y’) = (0, -2) E B.  Also, since B is connected, (0, 0) and 
(0, -2) must be connected, and under the constraint of B, this 
is possible only when B contains Quo. Therefore, bUo # 0. 

(ii) (Proof of (8)). Suppose auo = 0 and bUo # 0. Since 
(B),  c S for all a E A and B contains Quo, there exists (x, y) E 

A such that Quo in ( B ) ( ,  y) coincides with Quo in S, and let 
(x, y) = (0, 0) arbitrarily. Then, A has the constraint shown in 
Fig. A2(c); otherwise, (B),  for some a E A is not a subset of S.  
Since A is connected, ( 0 , O )  in Fig. A2(c) must be connected to 
other pixels in A .  Because of the constraint on A in the chain 
code of A ,  the boundary connected to (0, 0) from the left side 
must be QJ7, QL6, Qr5 or direction 4, and the boundary con- 
nected to (0, 0) from the right side must be Qm of any type or 
direction 0. If the boundary connected from the left is QJ7, then 
aV = ar7 = a7 = 0 because the boundary right after QJ7 is Qm or 
0. In addition, since a57 # 0, a6 = a5 = ah = 0 from (4). There- 
fore, a7 + a6 + us + ar7 + ah + aV = 0. If the boundary from the 
left is Qu, Qr5, or 4, we can derive the same result in the same 
way. Finally, since B E and bUo # 0, bl + b6 + b5 + br7 + bh 
+ bV = 0 from (3). Therefore, (8) results. 

The case when aUo # 0 and buo = 0 can be proved in similar 
fashion, and when aUo # 0 and bUo # 0, (8) results directly 
from (3). 0 

Proof of Proposition 3: We shall prove (3) and (5 )  when 
i = 0 only. Other case can be proved in a similar fashion. 

(i) (Proof of (3)). Suppose sm # 0. From (8), u7 = a6 = a5 = 
ur7 = ah = av7 = b7 = b6 = bS = br7 = b6 = bV = 0. Then, 
ai + bi = 0 for i = 5, 6, 7, which violates (16) for i = 5 ,  6, 7. 
Therefore, S cannot contain convex boundary of directions 5, 
6, and 7, so si = 0 for i = 5, 6, 7. Also, ai + ai - 1 + uri + bi + 
bi - + bri = 0 for i = 6, 7 ,  which violates (15) for i = 6, 7 .  
Therefore, sri = 0 for i = 6, 7.  Finally, a5 + a7 + ah + ar7 + uw 
+ b5 + bl + bh + br7 + bW = 0, which violates (13) for i = 7. 
Therefore, s, = 0. In summary, s5 = s6 = s7 = s h  = sr7 = sv7 = 0, 
so (3) results. 

(ii) (Proof of (5)). Suppose sm # 0. Then, from (12), a7 = b7 
= 0. Therefore, (16) for i = 7 is not satisfied, so s7 = 0. Hence, 
( 5 )  results. 0 

Proof of Proposition 4 : Since every 3 x 3 image is a mem- 
ber of @ and @ is closed under dilation by 3 x 3 image, every 

0 decomposable image is a member of @. 

Proof of Proposition 5 : We shall prove suo = aUo + bm and 
$6 = 0 6  + b6 only. Other cases can be proved similarly. 

(i) From Equations ( 2 )  and (3), the neighborhood of Quo in 
A has the constraint shown in Fig. A3(a), where aUo = 2. Since 
Qm in A is not removed, suo 2 am, and S has the constraint in 
Fig. A3(b). Consider four don’t-cares U, v, w, and x in S. When 
B does not contain Quo, v and w cannot be pixels of S because 
v, w q! (B)a for any pixel or don’t-care a of A ,  therefore sm is 
equal to auo. When B contains Qm, v, or w, but not both, is a 
pixel of S .  Then, sm 2 am + 1 in order to connect v or w to 
pixels in S under the given constraint. However, U and x cannot 
be pixels of S, so suo = uUo + 1. Therefore, in both cases, suo = 
all0 + buo. 

(ii) Fig. A3(c) shows the constraint on the neighborhood of 
direction 6 in A ,  where a6 = 2. Fig. A3(d) shows the constraint 
on S because s6 2 a6. Since a6 # 0, Equations (8) for i = 0 and 
(14) for i = 7 are not satisfied; therefore, S cannot contain Qm 
and Qvr. Consequently, from the assumption that no concave 
boundaries are removed, B cannot contain Quo and Q,, either. 
Consider six don’t-cares in S. When b6 = 0, w or x can be a 
pixel of S only when B contains Q, or Quo, which is impossi- 
ble. Hence, w, x e S, and s6 is equal to a6. When b6 = 1, w or 
x, but not both, is a pixel of s, so b6 2 a6 + 1. However, v, y 
S, because B cannot contain Q ,  and Quo. In this case, s6 = a6 + 
1. When b6 = 2, v, w E S or x, y E S, so s6 2 a6 + 2. However, 
U, q! s because B is 3 X 3. In this case, 36 = a6 + 2. Therefore, 

0 in all three cases, $6 = a6 + 66. 

Proof of Proposition 6 : We shall prove (17) when i = 0, 
that is, the case when Quo in A is removed after dilation by B .  
Other cases can be proved in a similar way. Suppose that 
aUo # 0 but sm = 0. We assume that the origin of B is located 
at the starting pixel of the chain code, and the origin of A is lo- 
cated arbitrarily inside A .  Suppose b7 + b6 + b5 + brl + bh + b~ 
= 0. Then, in chain code representation of B, two directions 
adjacent to the origin of B are 4 and 0. Therefore, when B is 
shifted to any pixel of A ,  no pixel of B can be placed at the in- 
dentation of Quo in A .  consequently, S = A 0 B contains Quo 
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0 .  0 . .  0 . -  0 . .  0 . .  0 . .  
X X .  X X .  + x.. X X .  x x .  + x.. 
0 . .  0 . .  0 . .  x.. x.. x.. 

(4 (b) (c) (d) 
Fig A4. Proof of Proposition 9. (a) B contains Qw. x is a non-pixel of B. For any a E A, (B). has a pixel at x because S does not contain Qw. (b) B is replaced 
byE (c) E contains Qm. x is a non-pixel of B. For any a E A, (B), has a pixel at x because S does not contain QW and Qm. (d) B is replaced by h. 

which is a contradiction to the assumption of suo = 0. There- 
fore, (17) results. 0 

Proof of Proposition 7 : Let P = A Q B E @. Suppose a 
particular QTi in A is removed due to dilation by B; then, (17), 
(1 8), or (19) for B, depending on the type of concave boundary 
QTi in A, must be satisfied. Hence, (17) (18), or (19) for S must 
be satisfied because si = ai + bi and  ST^ = uTi + bTi. In addition, 
sn f 0 because an # 0 and  ST^ =  UT^ + bTi. These two condi- 
tions on si and sTir however, mean that S er @ from (3), (4), 
(5 ) ,  or (6), which is a contradiction to the assumption S E @. 
Therefore, all QTi in A must be contained in P. Similarly, all 
Qri in B are contained in P.  Then, from Proposition 5, pi  = ai + 
bi and p ~ i  =  UT^ + bTi. Therefore,  ST^ = pn  and si = pi, which 
means that the chain code of P = A Q B is identical to that of S 

0 and the boundary of A Q B is identical to that of S. 

Proof of Proposition 8: From Proposition 7, the boundary 
of S is identical to that of A Q B. Since A Q B is simply con- 
nected, S = A Q B,  so B is a factor of S. 0 

S =  U ( B ) , = A Q B .  

Now, we shall prove that all concave boundaries in B are con- 
tained in S. Suppose that a concave boundary in B is not con- 
tained in S. Then replacement of B can be repeated until all 
concave boundaries in the new B are contained in S or the new 
B has no concave boundary. Therefore, all concave boundaries 

0 

l l€A 

in B are contained in S. 

Proof of Proposition I O :  Since S is decomposable from 
Proposition 9, S can be represented by S = A' Q Q A", 
where Ak is 3 x 3 or less and all concave boundaries in Ak are 
contained in S. Then, from Proposition 5 ,  

n 

sn = x u ; i .  
k=l 

Therefore, sTi # 0 implies that there exists k such that uFi # 0, 
so at least one factor contains Qn. 0 

proof Of ProPosition 9: We shall Prove the cases for Quo 
and Qm; other cases can be proved similarly. First, we shall 
prove that B in S = A Q B can be replaced by B such that S = A 
&?. (i) Suppose B contains Quo and S does not, that is, buo f 0 
and suo = 0. Since 

Proof of Proposition 11: (i) (Sufficient). Let P = xlA' Q 
x 2 ~ 2  Q ... Q xrp". ne product of irh row of 0 and x in (20) is 
he  number of concave boundary vi's in p from Proposition 5 
because all concave boundaries in A' are contained in P. 
Therefore, (20) implies that pTi = sTi. The product of irh row of 
Q and X in (21) is the number of direction dis in P from 
Proposition 5 .  Therefore, (21) implies that pi  I si. Let bi = si - 

S = A Q B =  U (B),, 
U € A  

( B ) , c  S for all a E A .  Since S does not 
S must be located at x in eachA (B),  as 
Therefore, (B) ,  c S implies ( B ) ,  c S 
B corresponds to B after Quo is replaced 
for example). Moreover, since B c B, 

contain Quo, a pixel of 
defined in Fig. A4(a). 
for all a E A ,  where 
by QW (see Fig. A4(b) 

S= U ( B ) , c  U ( B ) , c S .  
E A  E A  

Therefore, 

pi.  Then B created by bi defines a convex image in @, and si = 
pi  + bi and sn = pTi + bTi, where bTi = 0. Therefore, from 
Proposition 7, the boundaries of S and P Q B are identical. In 
addition, P Q B is simply connected, so is equal to S. Also, B 
is convex and always decomposable into 3 x 3 elements [ 5 ] .  
Therefore, S is decomposable. 

(ii) (Necessary). Suppose S is decomposable, S = xlA1 Q CI3 
x,J" @ B, where A' is a 3 x 3 prime concave factor whose con- 
cave boundaries are contained in S, and B is a convex factor of 
arbitrary size. Then, 

T i -  2 
k=l 

(ii) Suppose B contains Qm and S does not. Then, from (18), u7 
+ a6 + ur7 # 0, which violates (8). Therefore, S does not con- 

each (B), as defined in Fig. A4(c);-otherwise, S contains Qm or 
QUO. Therefore, (B),  c S implies (B),  c S for all U E A ,  where 
B corresponds to B after QAI is replaced by Qr7 (see Fig. A4(4 
for example). Therefore, 

s - x& and s i =  Cx,u,k + bi 
[ k l l  ] tain QUO. Consequently, a pixel of S must be located at x in 

from Proposition 5. Therefore, there exists an X such that 
Equations (20) and (21) are satisfied and xlA' Q Q x d "  Q 
B is simply connected. 0 
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APPENDIX €3: OPTIMIZATION PROCEDURE 

This appendix gives a procedure to find the decomposition 
of convex factor B, to locate the origin of each factor, and to 
minimize the number of 3 x 3 elements. 

1) Replace Step 2 of Algorithm B in [5] by the following: 
Determine the decomposition of B using Algorithm A in 
[ 5 ] .  For all concave factors (A'} and convex factors de- 
rived from B, put l x 2 factors in the class C1, 2 x l fac- 
tors in C2, 2 x 2 factors in C3, 2 x 3 factors in C4, 
3 x 2 factors in C5, and 3 x 3 factors in C6. 

2) Continue Algorithm B of [5 ] .  
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