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New Image Compression Techniques Using
Multiwavelets and Multiwavelet Packets

Michael B. Martin and Amy E. Be]lIMember, IEEE

Abstract—Advances in wavelet transforms and quantization This benefit comes from the ability of the wavelet packets to
methods have produced algorithms capable of surpassing the petter represent high-frequency content and high-frequency
existing image compression standards like the Joint Photographic q¢ijjating signals in particular. This allows wavelet packets to
Experts Group (JPEG) algorithm. For best performance in image .S .
compression, wavelet transforms require filters that combine perform S|gn!f|cantly better than wavelets for the compression
a number of desirable properties, such as orthogonality and Of images with a large amount of texture—such as the com-
symmetry. However, the design possibilities for wavelets are monly used Barbara image. Experiments show that wavelet
limited because they cannot simultaneously possess all of thepacket techniques applied to such images can outperform
desirable properties. The relatively new field of multiwavelets wavelet techniques [6], [7]. Researchers also point out that the

shows promise in obviating some of the limitations of wavelets. . . SR T . .
Multiwavelets offer more design options and are able to combine perceived image quality is significantly improved using wavelet

several desirable transform features. The few previously published Packets instead of wavelets, especially in the textured regions of
results of multiwavelet-based image compression have mostly the images. We introduce a new approach to improving wavelet
fallen short of the performance enjoyed by the current wavelet packet-based image compression: multiwavelet packets.
algorithms. This paper presents new multiwavelet transform This paper begins with a brief overview of image compres-

and quantization methods and introduces multiwavelet packets. . h b d i let d let ket
Extensive experimental results demonstrate that our techniques S'ON' SCN€MES based on multiwvavelets and wavelet packets.

exhibit performance equal to, or in several cases superior to, the TWO new technigues for improving the decomposition iteration

current wavelet filters. and zerotree-based quantization for multiwavelets are then
Index Terms—mage compression, multiwavelet packets, multi- presen.ted. Next, multiwavelet packets [8] are .deflned ”_1 terms
wavelets. of multiwavelets and wavelet packets. Extensive experimental

results are then presented using recently-constructed orthogonal
and biorthogonal (SA) multiwavelets; they illustrate that our
|. INTRODUCTION new methods improve results over the existing methods (using
LGORITHMS based on wavelétshave been shown to the best known scalar wavelets) for many test images. Finally,

work well in image compression. Theoretically, multiconclusions about the effectiveness and the limitations of these
wavelets should perform even better due to the extra freedomigly methods are discussed.

the design of multifilters. But previously published results still
favor wavelets since the effective application of multiwavelets
requires solving additional problems to those encountered with ]
wavelets [1], [2]. Theoretical and experimental results in tHe- Multiwavelets
study of multiwavelets have been steadily progressing and allThe wavelet transform is a type of signal transform that is
of the key components for the application of multiwaveletsommonly used in image compression. A newer alternative to
to image compression are now in place. In particular, thetiee wavelet transform is the multiwavelet transform. Multi-
now exist methods for: the construction of orthogonal angdavelets are very similar to wavelets but have some important
biorthogonal multifilters with desirable filter properties [3].differences. In particular, whereas wavelets have an associated
[4]; good preprocessing techniques [2], [5]; and a method fetaling functiony(¢) and wavelet functior(¢), multiwavelets
symmetric signal extension for symmetric—antisymmetric (SAjave two or more scaling and wavelet functions. For notational
multiwavelets [3]. convenience, the set of scaling functions can be written using
Another way to achieve improved compression results oviéfe vector notatior®(t) = [¢1(t) ¢2(t) -+ ¢.(£)]F, where
wavelets is to use wavelet packets. Wavelet packets demar+) is called the multiscaling function. Likewise, the multi-
strate a significant improvement in reconstructed image qualifiavelet function is defined from the set of wavelet functions
over the octave-band wavelet decomposition for some imagas¥(t) = [1(t) () - ¥.(O)]. Whenr = 1, ¥(¢t) is
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Il. BACKGROUND

o>
1To distinguish them from multiwavelets, wavelets may also be referred to as (1) =V2 Z Hp (2t — k), 1)

scalar wavelets k=—o00
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Note, however, tha{ H;} and{G}} arematrix filters, i.e., !
H; and Gy, arer x » matrices for each integér. The matrix
elements in these filters provide more degrees of freedom thag 1. possible wavelet packet filter banks: (a) standard wavelet
a traditional scalar wavelet. These extra degrees of freedom degpmposition, (b) full tree (Walsh basis), and (c) and (d) are other
be used to incorporate useful properties into the multiwaveRassiilites.
filters, such as orthogonality, symmetry, and high order of ap-
proximation. The key, then, is to figure out how to make thselecting a subset of the library with the right set of parameters
best use of these extra degrees of freedom. Multifilter constrdes, j, £} [9].
tion methods are already being developed to exploit them [3], This selection of a basis can be viewed in terms of a tree struc-
[4]. However, the multi-channel nature of multiwavelets alsture, in which the set of elements of each basis corresponds in a
means that the subband structure resulting from passing a signa-to-one fashion to a particular set of terminal nodes of a bi-
through a multifilter bank is different. Sufficiently different, innary tree. Some examples of possible basis selections are shown
fact, so that established quantization methods do not performeasrees in Fig. 1. For example, the tree in Fig. 1(a) corresponds
well with multiwavelets as they do with wavelets. In the nexto the wavelet octave-band decomposition.
section, these key differences are examined and new method#/avelet packets impose increased computational complexity

for improving performance are developed. due to the basis selection process. Selection of a “best” basis
for any particularimage may be performed in a number of ways.
B. Wavelet Packets Coifmanet al.suggested the use of an additive cost function that

Multiwavelets provide one alternative to the wavelet transs applied to each set of parent and child nodes in the pruning
form. Another alternative is the wavelet packet transform. DgFocess. If the sum of the costs of the children is greater than
spite its general success, the wavelet transform often fails to #t parent’s cost, the children are pruned; otherwise the chil-
curately capture high-frequency information, especially at lodren are kept. The performance of this method depends entirely
bit rates where such information is lost in quantization noisen the choice of cost functions. Some cost functions that have
Coifmanet al.developed a technique called wavelet packets tHagen proposed include: Shannon entropy [10], the number of
is better able to represent high-frequency information [9].  coefficients in the node that are significant compared to (i.e.,

A multilevel wavelet filter bank involves iterating the low-greater than) some threshdl{6], and the number of bits re-
pass—highpass filtering and downsampling procedure only guired to represent all the coefficients in the node (introduced
the output of the lowpass branch of the previous stage. Coifmianthis paper).
et al. formulated an extension of the octave-band wavelet de-Newer methods for selecting a basis approach the problem
composition to a full tree decomposition by allowing the lowfrom a rate-distortion perspective. Ramchandran and Vetterli
pass—highpass filtering and downsampling procedure to be iteroposed a method that attempts to select the set of terminal
ated also on highpass (bandpass) branches in the tree [9]. Theges that are optimal in a rate-distortion sense [11]. Their ap-
defined the new basis functions, called wavelet packets, as fatoach involves the minimization at each branch of aLagrangian

lows. “cost function,”J(\) = D+ AR, whereD is the average distor-
Let ¢(¢) and(¢) be the scaling and wavelet functions, retion andR is the target average bit rate. The value\dhat min-
spectively, which obey the two-scale equations imizes./ () determines whether to prune and also gives the best
- quantizer for that node (which is then used for uniform quantiza-
-2 Z ha(2t — k), ©) tion of the coefficients of that node). More recently, Xicetaal.
N have taken this idea and merged the basis optimization with their
oo space-frequency quantization (SFQ) approach, yielding impres-
=2 Z ap(2t — k). (4) sive results [7], [12].
k=—oc

Note that the sequencdd,} and {g;} are the scaling and Il NEW METHODS FORMULTIWAVELETS

wavelet filter coefficients. Now letio(t) = ¢(¢) andu,(¢t) = A. Iteration of Decomposition
¥(¢), and define During a single level of decomposition using a scalar wavelet
oo transform, the two-dimensional (2-D) image data is replaced
upn(t) = V2 Z hiun (2t — k), (5) with four blocks corresponding to the subbands representing ei-
k=—o0 ther lowpass or highpass filtering in each direction. These sub-
g bands are illustrated in Fig. 2(a); for example, the data in sub-
Uzng1(t) =V2 > grun(2t — k). (6) bandLH was obtained from highpass filtering of the rows and
k=—oo then lowpass filtering of the columns. The multiwavelets used

Taking dyadic rescalings and translations of these functiogre have two channels, so there will be two sets of scaling

. ; : Y h i T
_V'elds alibrary of functiong2 /2w, (27t — k)} This library  aygally this threshold is taken to be on the order of the quantization step
is overcomplete, but a proper complete basis can be founddne.
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Fig. 2. Image subbands after a single-level decomposition for (a) scaYgr P
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Fig. 3. Conventional iteration of multiwavelet decomposition.

Fig. 6. lllustration of the coefficient shuffling method for onex22 subband

TABLE | block in the multiwavelet transform. Selected pixels are numbered to indicate
PSNR ResuLTS (IN dB) COMPARING STANDARD AND NEW MULTIWAVELET correspondence (a) before shuffling and (b) after shuffling.
DECOMPOSITIONMETHODS
Comp. Decomposition iterated on:
Image Multifilter ratio L;L; Subband L1Lj Subband

(Standard) (New)
Lena SA4 16:1 33.50 34.66
BSA9/7 16:1 33.29 34.96
SA4 32:1 29.85 31.20
BSA9/7 32:1 29.88 31.94
Barbara | SA4 16:1 28.82 29.58
BSA9/7 16:1 28.79 30.25
SA4 32:1 25.78 26.30
BSA9/7 32:1 25.60 26.80

Fig. 7. Subbands in a 2-level multiwavelet decomposition after coefficient
shuffling. Solid lines denote new subband boundaries and dashed lines show
subband boundaries that are removed by coefficient shuffling.
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Fig. 8. Possible multiwavelet packet filter bank. Compare to Fig. 1(c).

Fig. 4. Proposed iteration method for multiwavelet decomposition. Compal%vel decomp05|t|0n§ are_ performed inthe same WaY' The multi-
to Fig. 3. wavelet decompositions iterate on the lowpass coefficients from

the previous decomposition, [thg L; subbands in Fig. 2(b)],
coefficients and two sets of wavelet coefficients. The multas shown in Fig. 3. In the case of scalar wavelets, the lowpass
wavelet decomposition subbands are shown in Fig. 2(b). Fquwarter image is a single subband. But when the multiwavelet
multiwavelets, thd. and H labels have subscripts denoting théransform is used, the quarter image of “lowpass” coefficients is
channel to which the data corresponds. For example, the sabtually & x 2 block of subbands—one lowpass and three band-
band labeled.; H, corresponds to data from the second channgéss. This is due to the use of SA multifilters. Thgt) scaling
highpass filter in the horizontal direction and the first channélinction associated with the second chantel, is bandpass
lowpass filter in the vertical direction. since its antisymmetric form gives a zerozat 1.

Scalar wavelet transforms give a single quarter-sized low-Two conclusions may be drawn from these observations.
pass subband from the original larger subband, as seen in stibst, since these fouk; L; subbands possess different statis-
bandL L in Fig. 2(a). In previous multiwavelet literature, multi-tical characteristics, mixing them together using the standard
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TABLE I

LISTING OF TEST IMAGES AND THEIR SOURCES OFORIGIN
Name 1 Source of Origin
Barbara http://www.icsl.ucla.edu/~ipl/psnr_images.html
Finger http://noodle.med.yale.edu/ meyer/profile.htinl
Goldhill http://www.icsl.ucla.edu/"ipl/psnr_images.html
Gray21 http://sipi.usc.edu/services/database/Database.html
1C MATLAB Image Processing Toolbox
Lena http://www.icsl.ucla.edu/"ipl/psnr.images.html
Lighthouse | http://noodle.med.yale.edu/ meyer/profile.html
Mandrill http://www.code.ucsd.edu/ sherwood/image_examples/chan_coded/chan_coded.html
Testpat-1k | http://sipi.usc.edu/services/database/Database html
Testpat2 MATLAB Image Processing Toolbox
Yogi http://saigon.ece.wisc.edu/” waveweb/QMF /software html

multiwavelet decomposition results in subsequent subbardsyest highpass subbands in a scalar wavelet transform are
with mixed data characteristics. This implies that typical quaeach split into & x 2 block of smaller subbands by the multi-
tization schemes that assume the statistics in each subbandaareelet transform, destroying the parent—child relationship that
either lowpass or highpass will not give the best possible resulBRIHT presumes [see Fig. 2(b)]. We present a new quantization
Second, since only thé, L; subband is entirely comprisedmethod that allows multiwavelet decompositions to receive
of lowpass characteristics, we only need to perform furthemost of the benefits of a SPIHT-like quantizer. The basic idea
iterations on that one subband. Experimental results demd-to try to restore the spatial features that SPIHT requires
strate that iterating only on the, L; subband at each stage infor optimal performance. Examination of the coefficients in a
the decomposition does indeed yield better compression trangle-level multiwavelet transform reveals that there generally
iterating on the fout; L; subbands. Some of these results amxists a large amount of similarity in each of thex 2 blocks
depicted in Table |. The 1-2 dB performance improvement ithat comprise thel; H;, H;L;, and H;H; subbands, where
dicated in Table I is typical of this new decomposition schéme. = 1, 2 andj = 1, 2.

It is also worth noting the computational savings realized on This observation suggests the following procedure: rearrange
all iterations subsequent to the first: iterating on only fhd.;  the coefficients in eacB x 2 block so that coefficients corre-
subband requires one-fourth the number of computations smnding to the same spatial locations are placed together. This
iterating over the fourl; L; subbands. The structure of this newnew procedure will be referred to abuffling A clearer picture
improved multiwavelet decomposition method is illustrated iof this is given in Fig. 6. Fig. 6(a) shows one of the 2 blocks

Fig. 4. resulting from a multiwavelet decomposition. Eight pixels (two
from each subband) are highlighted and given a unique numeric
B. Quantization: Shuffling label. Fig. 6(b) shows the same set of pixels after shuffling. Note

gt pixels 1-4 map to2ax 2 set of adjacent pixels, as do pixels
—08. This shuffling procedure restores some of the spatial de-

Pearlman [13]. SPIHT and other zerotree quantizers achi pdence of the pixels by moving those pixels that correspond

good performance by exploiting the spatial dependencies 192 psrncullar pta:jt ﬁf ;he |ma}ge to thle f((j)snmn tha’th[heyi/onuld
pixels in different subbands of a scalar wavelet transform. It:ﬁgg\'e een located had a scalar wavelet decomposition been per-

been noted [14] that there exists a spatial dependence bet
pixels in different subbands in the form of a child—parent rela- . .
tionship. In particular, each pixel in a smaller subband has fof;]]? om)l/.dthle,:LlLl. bIgck v;/ou'\lld |.00k Ir:ke tue one .de?ICteSbbyd
children in the next larger subband in the form &f & 2 block the solid lines in Fig. 7. Notice that the original subban

f adi t pixels. Thi lationship is illustrated in Fid. 5k?oundaries—indicated by dashed lines in the figure—have
o' agjacent pixe's IS relationship 1S Ifustrated in g Ei;]aen removed by the shuffling process. Although the coef-

which shows a three-level scalar wavelet decomposition a s in thi " et d i ith shuffli
some sample pixel relations. In this figure, each small squ jgrents in this muttiwavelet decomposition with shuftling
(];heme are different than the coefficients in a scalar wavelet

represents a pixel and each arrow points from a particu ition. thestruct £ th i let ficient
parent pixel to it2 x 2 group of children. The importance of ecomposition, thetructureot the muliwavelet coetlicients

the parent—child relation in quantization is this: if the pareﬁrti aI[[ but tfh?h smallef?tl;iLg s_ubba?d |s| thle sarlne as tr:et
coefficient has a small value, then the children will mostlike%%uc ure of the coeflicients In a lour-level scalar wavele

The quantization method used to generate the results in t
paper is the SPIHT zerotree quantizer developed by Said

X ed.
E‘ter shuffling coefficients, a 2-level decomposition iterating

also have small values; conversely, if the parent has a la composition. In other words, the structure of a four-level
value. one or more of th’e children m’ight also calar wavelet decomposition would be identical to Fig. 7

The assumptions that the SPIHT quantizer makes ab] hout the dashed lines—where pixels that correspond to the

spatial relations between subbands hold well for wavelets, bime spatial locations are next to each other in each subblock

they do not hold for multiwavelets. More specifically, the thre except the s_mallesLiLi SUb.b lock). Expe_rlmental reS.UItS n
the next section show that this new shuffling scheme improves

3More information about the entries in Table | can be found in Section IV-Anultiwavelet performance in many cases.
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TABLE Il
PSNR REsSuLTS (IN dB) FOR WAVELETS AND MULTIWAVELETS FOR NATURAL

TABLE IV
PSNR ResuLTS(IN dB) FOR WAVELETS AND MULTIWAVELETS FOR SYNTHETIC

IMAGES (1.0 bpp @RRESPONDS TO AN : 1 COMPRESSIONRATIO)

IMAGES (1.0 bpp ®RRESPONDS TO ANB : 1 COMPRESSIONRATIO)

Image Filter 1.000 0.500 0.250 0.125 Image Filter 1.000 0.500 0.250 0.125
bpp bpp bpp bpp bpp bpp bpp bpp
Bi9/7 38.99 | 35.62 | 3231 | 29.44 Bi9/7 - 88.17 | 59.04 | 49.45
Bi22/14 39.23 | 36.06 | 32.79 | 29.87 Bi22/14 - 86.19 | 57.98 | 48.61
SA4 38.31 34.66 31.20 28.34 SA4 - oo 67.11 52.44
SA4 (sh) 39.06 | 35.39 | 31.97 | 29.08 SA4 (sh) - ) 68.01 | 53.54
Lena | ORT4 38.35 34.71 31.24 28.38 Gray2l |[ORT4 - oo 68.43 52.39
ORT4 (sh) 39.09 | 3543 | 32.01 | 29.10 ORT4 (sh) - oo | 69.63 | 53.16
BSAY/7 38.06 | 34.96 | 31.94 | 29.30 BSAY/7 - 54.62 | 47.63 | 45.21
BSA9/7 (sh) || 3849 | 3555 | 32.62 | 29.81 BSA9/7 (sh) - 48.61 | 47.21 | 44.32
BSA7/5 38.49 | 34.83 | 31.29 | 28.38 BSA7/5 . oo 63.26 | 50.73
BSA7/5 (sh)|| 39.08 | 3543 | 31.96 | 28.95 BSA7/5 (sh) - oo 63.30 | 50.75
Bi9/7 34.58 | 29.74 | 26.35 | 23.81 Bi9/7 81.52 | 67.35 | 62.45 | 59.44
Bi22/14 35.30 | 30.32 | 26.85 | 24.00 Bi22/14 71.55 | 66.57 | 61.65 | 58.79
SA4 34.60 | 29.58 | 26.30 | 23.82 SA4 oo 70.12 | 63.23 | 60.00
SA4 (sh) 34.59 | 29.50 | 26.27 | 23.84 SA4 (sh) ) 70.06 | 62.66 | 59.40
Barbara | ORT4 34.66 29.64 | 26.33 23.86 Testpat2 | ORT4 oo 70.43 | 63.28 | 60.02
ORT4 (sh) 34.65 | 29.55 | 26.29 | 23.83 ORTA4 (sh) oo 70.38 | 62.66 | 59.41
BSA9/7 3471 | 30.25 | 26.80 | 24.31 BSA9/7 71.55 | 54.67 | 46.63 | 45.51
BSA9/7 (sh) || 34.67 | 30.01 | 26.60 | 24.05 BSA9/7 (sh) || 48.77 | 45.94 | 45.25 | 45.06
BSA7/5 34.92 | 2985 | 2648 | 23.85 BSA7/5 ) 71.73 | 63.20 | 59.79
BSA7/5 (sh) || 34.91 | 29.74 | 26.42 | 23.74 BSA7/5 (sh) ) 71.24 | 62.37 | 58.97
Bi9/7 3511 | 31.78 | 29.33 | 27.60 Bi9/7 46.81 | 36.25 | 27.25 | 22.04
Bi22/14 35.20 | 31.86 | 29.3¢ | 27.74 Bi22/14 48.47 | 36.67 | 30.04 | 24.12
SA4 35.19 31.73 29.08 27.30 SA4 52.51 | 41.38 | 32.88 | 27.14
SA4 (sh) 35.30 | 31.89 | 29.34 | 27.54 SA4 (sh) 53.68 | 40.15 | 31.80 | 26.22
Goldhill | ORT4 3520 | 31.75 | 29.10 | 27.32 Testpat_1k [ ORT4 52.25 | 41.15 | 32.83 | 27.20
ORT4 (sh) 35.31 31.89 29.35 27.55 ORT4 (sh) 53.89 | 39.70 | 31.96 26.33
BSA9/7 35.00 | 3178 | 20.27 | 27.61 BSA9/7 45.54 | 35.70 | 29.18 | 25.72
BSA9/7 (sh)}| 35.03 | 31.83 | 29.46 | 27.73 BSA9/7 (sh) || 45.09 | 35.15 | 28.05 | 23.46
BSA7/5 35.28 | 31.82 | 29.15 | 27.29 BSAT7/5 53.05 | 41.20 | 32.03 | 26.98
BSA7/5 (sh) || 35.35 | 31.90 | 29.35 | 27.51 BSA7/5 (sh)|| 51.83 | 38.61 | 31.15 | 25.39
Bi9/7 27.86 | 24.43 | 2230 | 21.16 Bi9/7 35.68 | 30.38 | 25.85 | 22.45
Bi22/14 28.07 | 24.61 | 22.35 | 21.21 Bi22/14 35.82 | 30.62 | 26.03 | 22.28
SA4 27.84 | 2440 | 22.24 | 21.04 SA4 35.70 | 30.94 | 26.10 | 21.87
SA4 (sh) 28.15 | 24.61 | 2247 | 21.16 SA4 (sh) 36.38 | 31.90 | 27.03 | 22.86
Mandrill | ORT4 27.86 24.41 22.25 21.05 Ic ORT4 35.71 30.97 26.15 21.91
ORT4 (sh) 28.17 | 24.63 | 22.48 | 21.16 ORT4 (sh) 36.39 | 31.91 | 27.03 | 22.89
BSA9/7 27.69 | 2441 | 2222 | 21.16 BSA9/7 35.06 | 30.30 | 26.07 | 22.33
BSA9/7 (sh) || 27.97 | 2455 | 2242 | 21.23 BSA9/7 (sh)|| 35.39 | 30.70 | 26.45 22.72
BSA7/5 2791 | 2449 | 2223 | 2114 BSA7/5 35.72 | 30.96 | 26.38 | 21.91
BSA7/5 (sh) || 28.17 | 24.62 | 22.46 | 21.20 BSA7/5 (sh)|| 36.25 | 31.50 | 26.92 | 2258
Bi9/7 32.73 | 2847 | 24.78 | 22.36 Bi9/7 3867 | 20.84 | 24.84 | 2191
Bi22/14 33.92 | 29.21 | 2553 | 23.13 Bi22/14 38.43 | 29.73 | 25.00 | 22.09
SA4 33.26 | 28.09 | 24.22 | 22.10 SA4 3554 | 28.77 | 24.13 | 21.24
SA4 (sh) 33.02 | 28.08 | 2445 | 22.06 SA4 (sh) 40.49 | 31.27 | 25.66 | 22.38
Finger | ORT4 33.38 | 28.13 | 24.22 | 22.12 Yogi ORT4 35.55 | 28.76 | 24.15 | 21.26
ORT4 (sh) 33.13 | 2813 | 2447 | 22.07 ORT4 (sh) 4042 | 31.19 | 25.65 | 22.39
BSA9/7 34.49 | 29.60 | 25.89 | 23.25 BSA9/7 34.97 | 2824 | 24.06 | 21.50
BSA9/7 (sh){| 3423 | 29.48 | 25.78 | 23.12 BSA9/7 (sh)|| 37.94 | 20.80 | 25.01 | 2217
BSA7/5 33.89 | 2839 | 24.21 22.15 BSA7/5 35.48 | 28.68 | 24.13 | 21.26
BSAT7/5 (sh) || 33.63 | 28.36 | 24.50 | 22.08 BSA7/5 (sh) || 39.17 | 30.35 | 25.12 | 22.18
C. Multiwavelet Packets LetU o U o d defi
Just as with scalar wavelets, the multiwavelet filter bank pro- et Uo() = (t) andl (%) = W(t), and define
cedure involves iterating the filtering operation on the lowpass 0
channel of the filter bank. And, just as with scalar wavelets, new Upn(t) =V2 Y HWU,(2t— k), (7)
basis functions can be produced by iterating on the highpass k=—oc0
channels of multiwavelet filter banks too. This new approach U =3 - GoU.- (2% — ks 8
combines wavelet packet decomposition with multiwavelet fil- 2t (t) = kZ KUn ): ®)
C=—00

ters; hence, we call it multiwavelet packet decomposition. We
define multiwavelet packets in a manner analogous to the defi-Note the similarity between these mulitwavelet packet equa-
nition of wavelet packets. tions (7) and (8) and the corresponding wavelet packet equa-
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Fig. 9. Barbara at 0.25 bpp (corresponds to a 32:1 compression ratio) whiig. 10. Barbara at 0.25 bpp (corresponds to a 32: 1 compression ratio) with
Bi22/14 wavelet; PSNR= 26.85 dB. BSA9/7 multiwavelet; PSNR= 26.80 dB.

tions, (5) and (6). Here, the tree structures that represent bases |
for multiwavelet packets look just like those in Fig. 1 with the .
exception that the,,(¢) functions in Fig. 1(c) are replaced by
the corresponding vector-valued functidig(t). For example,

the wavelet packet tree in Fig. 1(c) has a multiwavelet version
that is shown in Fig. 8.

The basis selection algorithms and cost functions used to
prune the resulting tree structure are identical to those of the
scalar wavelet packet case with one exception: each branching
in the multiwavelet packet tree structure creates four new chan-
nels (assuming: = 2) instead of just two. Since the mul-
tiwavelet packet tree then has four children for each parent,
the computational complexity for multiwavelet packets may be
higher than for wavelet packets. Cost function based methods
will be essentially unaffected because they just operate on all the
pixels corresponding to each node; with multiwavelet packets
there are four nodes instead of two, but each node represents
half as much data. However, methods that perform some form Fig. 11. Original Barbara, showing a close-up of the leg.
of rate-distortion optimization will require more computation

due to the increased number of nodes. The experiments were conducted on many images. The Lena,
Barbara, Goldhill, and Mandrill images are the canonical 8 bpp
V. EXAMPLES AND FURTHER REMARKS grayscale test images used frequently in the image compression

literature (1.0 bpp corresponds to an 8:1 compression ratio).
The Testpat2 and IC images were taken from the MATLAB
Image compression experiments using multiwavelets wdraage Processing Toolbox. The remaining images were ob-
conducted both with and without the two new methods: iteratidained from various image repositories on the Internet. Table Il
of decomposition and quantization shuffling. Both orthogonalrovides a complete listing of the specific origins for all of the
and biorthogonal multiwavelets were tested, and all are from timages presented in this paper.
class of SA multifilters. The orthogonal SA multifilters used are Tables Il and 1V show PSNR values for reconstructed im-
“SA4” and “ORT4" [2], [3]; for biorthogonal SA multifilters we ages. The values shown in boldface represent the best result
used “BSA7/5” and “BSA9/7” [4]. For comparison, two scalafor each image at each compression level. The “sh” following a
wavelets were used: the popular biorthogonal “Bi9/7" filter [15filter name in Table Il or Table IV indicates that the new shuf-
and the recently presented “Bi22/14" biorthogonal filter [16]fling procedure was used in that case. In the following tables, the
All tests used the SPIHT quantizer [13], and no entropy codenages are divided into two categories based on their character-
was used since we were only interested in comparing the traissics: “natural” and “synthetic.” Natural images are those which
form and quantization performance. The néywl.; decompo- derive directly from a real-world source (such as a photograph)
sition method was used for all the multiwavelet results. and typically have a large amount of low frequency content.

A. Multiwavelet Results
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) . . Fig. 13. Lighthouse at 0.25 bpp (corresponds to a 32:1 compression ratio)
Fig. 12. Lighthouse at 0.25 bpp (corresponds to a 32:1 compression ra;m%h BSA7/5 multiwavelet with shuffling; PSNR: 26.84 dB.
with Bi22/14 wavelet; PSNR= 26.72 dB.

Synthetic images are those which are typically generated by a
computer or a similar process; they tend to have more high-fre-
guency content than natural images and they often do not com-
press as well with traditional image compression transforms like
the discrete cosine transform (DCT) and scalar wavelets.

Immediate observations from Tables Il and IV suggest
that wavelets and multiwavelets have different strengths and
weaknesses. Multiwavelets give the best performance on the
synthetic images, to the point of achieving lossless compression
(i.e., an MSE of zero) on some “geometric” images (Gray21
and Testpat2). Not surprisingly, the short-support orthogonal
multifilters SA4 and ORT4 capture the sharp transitions in
the synthetic images better than other filters. The longer
biorthogonal multifilters BSA9/7 and BSA7/5 perform best on
natural images with significant high-frequency content, such
as Goldhill, Mandrill, and Finger. Natural images with mostly
low-frequency content (e.g., Lena and Barbara) are best com-
pressed with scalar wavelets, where the Bi22/14 filter easily
outperforms all other filters. Even for these cases, however, tﬁ@ 14. Original Lighthouse, showing a close-up of the fence and binoculars.
BSA9/7 multifilter with shuffling sometimes outperforms the

commonly-used Bi9/7 filter. A decrease in performance as a result of shuffling is presum-
The shuffling procedure adjusts reconstruction performanably due to unstructured high-frequency content in the image.
based on the type and amount of high-frequency content in tRecall that shuffling regroups the pixels so that the original spa-
image being compressed. Whereas predominantly smooth imt locations are preserved. In low frequency regions, the re-
ages like Lena show marked gains when shuffling is used, a cgreuped pixels are similar; however, in high frequency regions,
responding benefitis not realized forimages with more high fréhe regrouped pixels may be quite dissimilar. In this case, the
guency content. In particular, the results for Finger were not ifack of significant spatial dependency means that the benefits
proved by shuffling. Similar results are observed with the syderived from the SPIHT quantization are limited. Thus, images
thetic images. On the very geometric Testpat2, multiwaveldike Barbara that lack structure in the bandpass subbands due to
did better without shuffling, and yet shuffling helped (to varyings high-frequency content do not experience any benefit from
degrees) on the smoother Gray21, IC, and Yogiimages. It shosllffling. However, performance losses due to shuffling are usu-
be noted that in those cases where shuffling did improve patty small and often occur in cases where the multiwavelets out-
formance, the improvement could be substantial. For exampberform scalar wavelets. For example, shuffling coefficients in
in the Lena image, shuffling raised the performance of matte Fingerimage tended to lower the multiwavelet PSNR results
multiwavelets from underperforming the Bi9/7 filter to equal oby up to nearly 0.3 dB. Even though the shuffled result for the
slightly better PSNR levels. BSA9/7 multifilter is lower than the unshuffled result at all bit
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Fig. 16. IC at 0.5 bpp (corresponds to a 16:1 compression ratio) with SA4
Fig.15. ICat0.5 bpp (corresponds to a 16 : 1 compression ratio) with Bi22/ddultifilter with shuffling; PSNR= 31.90 dB.
wavelet; PSNR= 30.62 dB.

rates, the shuffled result is still at least as good as the Bi22/14
scalar wavelet result at all bit rates. In contrast, when shuffling
improves performance, the improvement is often quite signifi-
cant. Hence, while the type of image being compressed has a
significant bearing on whether shuffling would be beneficial, in
general it would be safe to use the shuffling method.

In some cases, tests on images that contain large textured re-
gions (like Barbara and Finger) demonstrate that multiwavelets
can attain some of the benefits of wavelet packets (by preserving
high-frequency patterns that are lost by scalar wavelets with a
nonpacket decomposition). An illustration of this feature is de-
picted in the enlargement of two reconstructions of the Barbara
image in Figs. 9 and 10 (the enlargement of the original image
is shown in Fig. 11 for comparison). Notice that the pattern in
the pants is better preserved by the multiwavelet even though its
PSNR is slightly lower than the scalar wavelet PSNR. High-fre-
quency content that is spread over a large image region—or
which exhibits oscillations (as in the Barbara image)—is cur-
rently best preserved with wavelet packets (as the next section
will show), but multivavelets appear to perform moderateljnuch closer the multiwavelet with shuffling reconstruction is
well without the packet-based decomposition. to the original than the scalar wavelet reconstruction.

Two further illustrations visually compare the best wavelet 1€ SA4 and ORT4 multiwavelets tend to perform best

reconstruction with the best multiwavelet reconstructio@n Synthetic Images; it Is interesting to note that these two
Figs. 12 and 13 show two enlargements of reconstructions ¥fnogonal multiwavelets show nearly identical performance in
Lighthouse—a natural image with a high frequency pattefHO_St situations. The BSA7/5 multlwavelet perfor_meq best on
in the picket fence (the enlargement of the original image ‘i'g_wlxed,” natgral images like Goldhill and Mandrill. L|_ke the
shown in Fig. 14 for comparison). Here the multiwavelet PSNRI9/7 and Bi22/14 scalar wavelets, the BSA9/7 multivavelet
is slightly higher (0.12 dB) than the wavelet PSNR. Notice jR€"formed best on natural images. However, while the Bi9/7
Fig. 13 that the fence details, the edges of the binoculars, &l Bi22/14 scalar wavelets perform best on smooth images
the outline of the background trees is better than in Fig. 18€ Lena, BSA9/7 performs better on images like Finger
Figs. 15 and 16 show two enlargements of reconstructions'$fich have a large amount of structure (and hence some
IC—a synthetic image with large, smooth regions as well £igh-frequency patterns) throughout the entire image.
high-frequency edges (the enlargement of the original image .

is shown in Fig. 17 for comparison). Here the multiwaveldt: Multiwavelet Packet Results

PSNR is significantly higher (1.28 dB) than the wavelet PSNR A second set of image compression experiments was con-
(shuffling provided 0.96 dB of this improvement). Notice howducted using the new multiwavelet packets. TablesV and VI

Fig. 17. Original IC image, showing a close-up.
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TABLE V TABLE VI
PSNR ResuLTs (IN dB) FOR WAVELET PACKETS AND MULTIWAVELET PSNR ResuLTs (IN dB) FOR WAVELET PACKETS AND MULTIWAVELET
PACKETS FORNATURAL IMAGES (1.0 BPP ®RRESPONDS TO AN PACKETS FORSYNTHETIC IMAGES (1.0 BPP ®RRESPONDS TO AN
8:1 COMPRESSIONRATIO) 8:1 COMPRESSIONRATIO)

Image Filter 1.000 0.500 0.250 0.125 Image Filter 1.000 0.500 0.250 0.125
bpp bpp bpp bpp bpp bpp bpp bpp

Bi9/7 (1) 37.84 34.55 31.58 28.78 Bi9/7 (1) - 72.64 59.41 49.66

Bi9/7 (2) 38.51 35.40 32.21 29.35 Bi9/7 (2) - 71.34 58.32 49.56

Bi22/14 (1) 37.99 | 3493 | 32.09 | 29.53 Bi22/14 (1) - 71.57 | 57.01 | 49.41

Bi22/14 (2) || 38.82 | 35.82 | 32.72 | 29.81 Bi22/14 (2) - 70.31 | 56.11 | 49.42

SA4 (1) 37.82 | 34.26 | 30.90 | 28.13 SA4 (1) - 77.50 | 65.56 | 52.19
Lena | SA4 (2) 38.22 | 34.53 | 30.99 | 28.15 Gray2l | SA4(2) - 76.90 | 64.01 | 52.27
ORT4 (1) 37.83 | 34.29 | 3094 | 28.18 ORT4 (1) - 77.39 | 65.77 | 52.01

ORT4 (2) 38.28 34.57 31.04 28.19 ORT4 (2) - 76.63 63.94 52.11

BSA9/7 (1) || 37.36 | 3439 | 31.60 [ 29.20 BSA9/7 (1) - 68.28 | 55.84 | 48.71
BSA9/7(2) || 37.86 | 34.65 | 31.69 [ 29.24 BSA9/7 (2) - 68.31 | 56.92 | 49.56

BSA7/5 (1) || 3821 | 3465 | 31.10 | 28.08 BSAT7/5 (1) - 77.12 | 6299 | 50.75

BSA7/5 (2) || 3844 | 3468 | 31.11 | 28.14 BSA7/5 (2) - 73.92 | 60.16 | 50.98

Bi9/7 (1) 35.02 | 30.67 | 27.37 | 24.89 Bi9/7 (1) 81.11 | 75.12 | 66.05 | 61.27

Bi9/7 (2) 35.84 31.30 27.83 25.18 Bi9/7 (2) 79.67 75.16 66.00 61.43

Bi22/14 (1) || 35.71 | 31.23 | 27.85 | 25.21 Bi22/14 (1) || 73.42 | 69.19 | 65.04 | 60.44

Bi22/14 (2) || 36.42 | 31.84 | 28.30 | 25.50 Bi22/14 (2) || 73.44 | 69.28 | 65.13 | 60.38

SA4 (1) 34.45 | 2952 | 26.48 | 24.02 SA4 (1) o0 78.23 | 70.51 | 63.42

Barbara | SA4 (2) 34.34 | 2962 | 26.75 | 24.37 Testpat2 | SA4 (2) oo 78.44 | T0.60 | 63.42
ORT4 (1) 34.50 29.59 26.54 24.08 ORT4 (1) 96.30 77.97 70.66 | 63.46

ORT4 (2) 34.45 29.68 26.78 24.41 ORT4 (2) 96.30 77.54 70.81 63.46

BSA9/7 (1) || 33.67 | 29.26 | 26.38 | 24.35 BSA9/7 (1) || 87.84 | 79.86 | 70.52 | 62.32

BSA9/7 (2) 34.61 30.02 26.78 24.24 BSA9/7 (2) 87.84 80.73 70.98 62.69

BSAT7/5 (1) 34.92 | 29.85 | 26.58 | 23.87 BSAT7/5 (1) oo 82.32 | 70.67 | 62.86

BSAT/5 (2) || 3469 | 29.92 | 26.98 | 24.54 BSA7/5 (2) ) 81.82 | 71.12 | 62.86

Bi9/7 (1) 3474 | 3160 | 29.26 | 27.37 Bi9/7 (1) 45.86 | 35.95 | 29.05 | 24.42

Bi9/7 (2) 35.07 31.95 29.49 27.57 Bi9/7 (2) 46.16 36.57 30.45 26.14

Bi22/14 (1) 34.89 31.78 29.40 27.61 Bi22/14 (1) 47.28 35.99 29.89 24.06

Bi22/14 (2) 35.17 32.01 | 29.52 | 27.75 Bi22/14 (2) 47.05 37.40 30.80 26.68

SA4 (1) 34.88 31.58 29.02 27.13 SA4 (1) 52.51 41.38 | 32.88 27.14

Goldhill | SA4 (2) 35.06 31.73 29.09 27.18 Testpat_1k | SA4 (2) 50.45 40.86 | 33.08 28.19
ORT4 (1) 34.75 31.46 29.02 27.16 ORT4 (1) 52.25 41.15 32.83 27.20

ORT4 (2) 35.05 31.75 29.10 27.18 ORT4 (2) 50.31 40.45 | 33.08 | 28.21

BSA9/7 (1) || 34.13 | 31.25 | 28.99 | 27.16 BSA9/7 (1) || 46.04 | 3542 | 29.20 | 25.63

BSA9/7 (2) 34.84 31.65 29.25 27.58 BSA9/7 (2) 45.82 35.64 29.40 25.74

BSA7/5 (1) || 3494 | 3164 | 2911 | 27.21 BSA7/5 (1) || 53.05 | 41.20 | 32.03 | 26.98

BSAT7/5 (2) 35.23 | 31.82 29.16 27.27 BSAT7/5 (2) 50.92 40.90 32.66 27.78

Bi9/7 (1) 26.97 | 23.98 | 21.96 | 20.95 Bi9/7 (1) 34.01 | 29.82 | 2583 | 2221

Bi9/7 (2) 27.53 24.37 22.23 | 21.16 Bi9/7 (2) 35.09 30.55 26.10 22.29

Bi22/14 (1) 27.08 24.08 22.06 20.97 Bi22/14 (1) 34.28 29.91 26.07 22.36

Bi22/14 (2) || 27.73 | 24.45 | 22.28 | 21.14 Bi22/14 (2) || 35.01 | 30.43 | 25.94 | 21.80

SA4 (1) 27.21 24.06 21.96 20.94 SA4 (1) 34.64 29.97 25.55 21.61
Mandrill | SA4 (2) 27.76 24.36 22.21 21.04 IC SA4 (2) 35.47 30.89 26.01 21.63
ORT4 (1) 27.24 | 24.06 | 21.96 | 20.95 ORT4 (1) 34.65 | 29.99 | 25.62 | 21.67

ORT4 (2) 27.73 24.32 22.20 21.04 ORT4 (2) 35.48 30.93 26.06 21.72

BSA9/7 (1) || 27.27 | 2358 | 21.73 | 20.75 BSA9/7 (1) || 33.31 | 29.49 | 25.91 | 22.08
BSA9/7(2) || 27.66 | 24.41 | 22.22 | 21.16 BSA9/7 (2) || 34.86 | 30.28 | 26.07 | 22.25

BSA7/5 (1) || 27.30 | 24.13 | 22.03 | 21.02 BSA7/5 (1) || 34.72 | 29.78 | 25.74 | 22.20
BSA7/5(2) || 27.84 | 2444 | 2221 | 2114 BSA7/5 (2) || 35.72 | 30.95 | 26.37 | 21.89

Bi9/7 (1) 34.42 | 29.39 | 2567 | 22.90 Bi9/7 (1) 38.67 | 29.84 | 2483 | 21.91

Bi9/7 (2) 34.59 | 29.64 | 25.92 | 23.26 Bi9/7 (2) 38.67 | 29.84 | 24.83 | 21.91

Bi22/14 (1) || 35.56 | 30.63 | 26.78 | 23.80 Bi22/14 (1) || 38.43 | 29.73 | 25.00 | 22.09

Bi22/14 (2) 35.63 | 30.65 | 26.77 | 23.81 Bi22/14 (2) 38.43 29.73 | 25.00 | 22.09

SA4 (1) 33.25 28.08 24.21 22.10 SA4 (1) 35.54 28.77 24.13 21.23

Finger | SA4 (2) 34.10 | 28.99 | 25.38 | 22.85 Yogi SA4(2) 3554 | 2877 | 24.13 | 21.23
ORT4 (1) 33.36 [ 28.12 | 2421 | 2211 ORT4 (1) 3555 | 28.76 | 24.15 | 21.25

ORT4 (2) 34.26 29.06 25.41 22.87 ORT4 (2) 35.55 28.76 24.15 21.25

BSA9/7 (1) 3452 | 29.55 | 2595 | 23.35 BSA9/7 (1) 33.36 | 27.59 | 23.74 | 21.31

BSA9/7 (2) 3456 | 29.75 | 26.26 | 23.57 BSA9/7 (2) 34.97 | 28.24 | 24.05 | 21.50

BSA7/5 (1) || 34.09 | 28.70 | 24.83 | 22.66 BSA7/5 (1) 35.48 | 28.68 | 24.13 | 21.26
BSA7/5(2) || 34.60 | 29.27 | 25.54 | 22.94 BSA7/5 (2) || 3548 | 2868 | 24.13 | 21.26

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 02:09 from IEEE Xplore. Restrictions apply.



MARTIN AND BELL: NEW IMAGE COMPRESSION TECHNIQUES 509

show PSNR values for the reconstructed images using waveteire low-frequency content; images with more high-frequency
packets and multiwavelet packets. The number in parenthesestent typically realize no significant performance benefit and
following a filter name in either of these tables indicates whicim some cases, performance is degraded. However, performance
cost function was used for that case. Cost function “1” computdecreases tend to be quite small whereas performance increases
the cost as the number of significant coefficiénits the tested from shuffling are often quite significant. Although this result
node. Cost function “2,” a new measure that we are proposingas not unexpected, a more thorough understanding of why
computes the cost as the total number of bits required in tlkuffling improves the compression and reconstruction of
binary representation of all the coefficients in that node. images with predominantly low-frequency—and not high-fre-
The results in Tables V and VI suggest multiwavelet packgtiency—content remains to be developed.
performance is mixed. While the multiwavelet packets typically The other new contribution of this paper—multiwvavelet
give the best results for the synthetic images, wavelet packptgkets—outperformed wavelet packets on images containing
give the best results for the natural images with few exceptiongrge amounts of high-frequency content that is either mostly
These results are similar to the nonpacket tests in Tables Il amgstructured (as in Mandrill) or geometric or regular in nature
IV, except now the multiwavelets show weaker results for the.g., Testpat2, Testpat_1k, and IC). However, wavelet packets
natural images. For the Barbara image, the best wavelet packgiibited better performance on most of the natural images.
result at each bit rate outperformed the best multiwavelet packgdreover, it was shown that multiwavelets can achieve some
result by between 1 and 1.5 dB. However, the multiwavelef the benefits of wavelet packets without the computational
packets performed best at 1 bpp for the Goldhill and Mandridixpense of the packet-based decomposition.
images, and for Mandrill a multiwavelet packet result could be It should be pointed out that the scalar wavelets used here
chosen at each bit rate that essentially equaled the best scalpresent the best known filters published after years of study.
wavelet packet result. Multiwvavelet packets gave predominantly contrast, the multifilters used here are still quite new—many
better results on the synthetic images. In particular, the SA4 aigve only been discovered within the past two years. Never-
BSA7/5 multiwavelet packets achieve perfect reconstruction geless, the multiwavelets used in this paper depicted perfor-
the highly geometric Testpat2 image at 1 bpp. mance equal to the best scalar wavelets in many cases. While
The authors presume that multiwvavelet packets performgtk Bi22/14 scalar wavelet gave consistently good performance
relatively poorly on the natural images because the iterated migr natural images, in most cases, a multiwavelet should give
tiwavelet transform produces a different subband structure thgimilar performance with lower computational complexity. Sim-
the wavelet transform. The standard wavelet transform struarly, in many cases, a multivavelet packet resulted in similar
ture assumed by SPIHT does not match the multiwavelet packetformance with lower computational complexity than the best
structure very well and hence some performance is lost duestealar wavelet packets. This indicates that multiwavelets are a
nonideal quantization. While the coefficient shuffling methodiable alternative to scalar wavelets in many situations.
introduced in this paper improved multiwavelet performance The techniques presented in this paper produce some of
with the SPIHT quantizer, no similar method currently exist$ie best-reported results to date for multiwavelet-based image
for multiwavelet packets and SPIHT-like quantizers. The use eédmpression compared to wavelet-based methods. Nonetheless,
a different quantization method, such as a uniform scalar quahere is always room for improvement. Since multivavelets
tizer, should give better results for multivavelet packets. Caste a relatively new subject of study, only a few construction
function “2” gives the best results in most cases; this is to be axethods have been published. While the latest published
pected since this cost function was chosen to work well with tigethods can construct SA multiwavelets with desirable mag-
SPIHT quantization method used here. However, a basis selgitude response characteristics, most current filters have few
tion method based on a rate-distortion approach [7], [11], [18}ders of approximatioh Future construction methods that add
would most likely result in better performance than the simplgigher orders of approximation while preserving the desirable

cost-function method used here. features of the current methods would most likely result in
multifilters that perform even better in image compression
V. CONCLUSIONS applications. Also, methods for reducing the computational

Two new methods for improving the multiwavelet transgomplexny of multiwavelets would be helpful, such as factoring

. ) . . Fhe multifilter into a cascade of shorter multifilters (as Meyer
form have been proposed in this paper: a new multiwavelet . .
- ; et al. do for scalar wavelets [6]) and implementation of the

decomposition that iterates only on thg ; subband, and o . . .

- . . . multifilter via the lifting schemé. Finally, good results have
a coefficient shuffling method to improve performance Wltrt]) en presented for applying multiwavelets to the denoising of
zerotree-based quantizers. Both methods have been showf[:g) P ppiyINg 9
improve the performance of multiwaveletimage compressionin

and 2-D signals [1], [5], [17]. Combined with the success
many cases. While the improved decomposition iteration giv

%gown here for multiwavelet image compression, it seems
uniformly better results, the performance gains of shuffling ely that multiwavelets may work well for the compression
depend on the image content. Shuffling helps most images wi

: knmsy images.

SFor example, the SA4 multiwavelet has only one approximation order, while

4In this case, the threshold used for significance testing is simply 0.5, tHte Bi9/7 scalar wavelet has four.
threshold below which a coefficient will be converted to 0 during integer con- 6Use of the lifting method could also result in multifiltering methods which
version. can be performed “in place.”
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