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New Image Compression Techniques Using
Multiwavelets and Multiwavelet Packets

Michael B. Martin and Amy E. Bell, Member, IEEE

Abstract—Advances in wavelet transforms and quantization
methods have produced algorithms capable of surpassing the
existing image compression standards like the Joint Photographic
Experts Group (JPEG) algorithm. For best performance in image
compression, wavelet transforms require filters that combine
a number of desirable properties, such as orthogonality and
symmetry. However, the design possibilities for wavelets are
limited because they cannot simultaneously possess all of the
desirable properties. The relatively new field of multiwavelets
shows promise in obviating some of the limitations of wavelets.
Multiwavelets offer more design options and are able to combine
several desirable transform features. The few previously published
results of multiwavelet-based image compression have mostly
fallen short of the performance enjoyed by the current wavelet
algorithms. This paper presents new multiwavelet transform
and quantization methods and introduces multiwavelet packets.
Extensive experimental results demonstrate that our techniques
exhibit performance equal to, or in several cases superior to, the
current wavelet filters.

Index Terms—Image compression, multiwavelet packets, multi-
wavelets.

I. INTRODUCTION

A LGORITHMS based on wavelets1 have been shown to
work well in image compression. Theoretically, multi-

wavelets should perform even better due to the extra freedom in
the design of multifilters. But previously published results still
favor wavelets since the effective application of multiwavelets
requires solving additional problems to those encountered with
wavelets [1], [2]. Theoretical and experimental results in the
study of multiwavelets have been steadily progressing and all
of the key components for the application of multiwavelets
to image compression are now in place. In particular, there
now exist methods for: the construction of orthogonal and
biorthogonal multifilters with desirable filter properties [3],
[4]; good preprocessing techniques [2], [5]; and a method for
symmetric signal extension for symmetric–antisymmetric (SA)
multiwavelets [3].

Another way to achieve improved compression results over
wavelets is to use wavelet packets. Wavelet packets demon-
strate a significant improvement in reconstructed image quality
over the octave-band wavelet decomposition for some images.
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1To distinguish them from multiwavelets, wavelets may also be referred to as
scalar wavelets.

This benefit comes from the ability of the wavelet packets to
better represent high-frequency content and high-frequency
oscillating signals in particular. This allows wavelet packets to
perform significantly better than wavelets for the compression
of images with a large amount of texture—such as the com-
monly used Barbara image. Experiments show that wavelet
packet techniques applied to such images can outperform
wavelet techniques [6], [7]. Researchers also point out that the
perceived image quality is significantly improved using wavelet
packets instead of wavelets, especially in the textured regions of
the images. We introduce a new approach to improving wavelet
packet-based image compression: multiwavelet packets.

This paper begins with a brief overview of image compres-
sion schemes based on multiwavelets and wavelet packets.
Two new techniques for improving the decomposition iteration
and zerotree-based quantization for multiwavelets are then
presented. Next, multiwavelet packets [8] are defined in terms
of multiwavelets and wavelet packets. Extensive experimental
results are then presented using recently-constructed orthogonal
and biorthogonal (SA) multiwavelets; they illustrate that our
new methods improve results over the existing methods (using
the best known scalar wavelets) for many test images. Finally,
conclusions about the effectiveness and the limitations of these
new methods are discussed.

II. BACKGROUND

A. Multiwavelets

The wavelet transform is a type of signal transform that is
commonly used in image compression. A newer alternative to
the wavelet transform is the multiwavelet transform. Multi-
wavelets are very similar to wavelets but have some important
differences. In particular, whereas wavelets have an associated
scaling function and wavelet function , multiwavelets
have two or more scaling and wavelet functions. For notational
convenience, the set of scaling functions can be written using
the vector notation , where

is called the multiscaling function. Likewise, the multi-
wavelet function is defined from the set of wavelet functions
as . When , is
called ascalar wavelet, or simply wavelet. While in principle

can be arbitrarily large, the multiwavelets studied to date are
primarily for .

The multiwavelet two-scale equations resemble those for
scalar wavelets

(1)
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(2)

Note, however, that and arematrix filters, i.e.,
and are matrices for each integer. The matrix

elements in these filters provide more degrees of freedom than
a traditional scalar wavelet. These extra degrees of freedom can
be used to incorporate useful properties into the multiwavelet
filters, such as orthogonality, symmetry, and high order of ap-
proximation. The key, then, is to figure out how to make the
best use of these extra degrees of freedom. Multifilter construc-
tion methods are already being developed to exploit them [3],
[4]. However, the multi-channel nature of multiwavelets also
means that the subband structure resulting from passing a signal
through a multifilter bank is different. Sufficiently different, in
fact, so that established quantization methods do not perform as
well with multiwavelets as they do with wavelets. In the next
section, these key differences are examined and new methods
for improving performance are developed.

B. Wavelet Packets

Multiwavelets provide one alternative to the wavelet trans-
form. Another alternative is the wavelet packet transform. De-
spite its general success, the wavelet transform often fails to ac-
curately capture high-frequency information, especially at low
bit rates where such information is lost in quantization noise.
Coifmanet al.developed a technique called wavelet packets that
is better able to represent high-frequency information [9].

A multilevel wavelet filter bank involves iterating the low-
pass–highpass filtering and downsampling procedure only on
the output of the lowpass branch of the previous stage. Coifman
et al. formulated an extension of the octave-band wavelet de-
composition to a full tree decomposition by allowing the low-
pass–highpass filtering and downsampling procedure to be iter-
ated also on highpass (bandpass) branches in the tree [9]. They
defined the new basis functions, called wavelet packets, as fol-
lows.

Let and be the scaling and wavelet functions, re-
spectively, which obey the two-scale equations

(3)

(4)

Note that the sequences and are the scaling and
wavelet filter coefficients. Now let and

, and define

(5)

(6)

Taking dyadic rescalings and translations of these functions
yields a library of functions . This library
is overcomplete, but a proper complete basis can be found by

Fig. 1. Possible wavelet packet filter banks: (a) standard wavelet
decomposition, (b) full tree (Walsh basis), and (c) and (d) are other
possibilities.

selecting a subset of the library with the right set of parameters
[9].

This selection of a basis can be viewed in terms of a tree struc-
ture, in which the set of elements of each basis corresponds in a
one-to-one fashion to a particular set of terminal nodes of a bi-
nary tree. Some examples of possible basis selections are shown
as trees in Fig. 1. For example, the tree in Fig. 1(a) corresponds
to the wavelet octave-band decomposition.

Wavelet packets impose increased computational complexity
due to the basis selection process. Selection of a “best” basis
for any particular image may be performed in a number of ways.
Coifmanet al.suggested the use of an additive cost function that
is applied to each set of parent and child nodes in the pruning
process. If the sum of the costs of the children is greater than
the parent’s cost, the children are pruned; otherwise the chil-
dren are kept. The performance of this method depends entirely
on the choice of cost functions. Some cost functions that have
been proposed include: Shannon entropy [10], the number of
coefficients in the node that are significant compared to (i.e.,
greater than) some threshold2 [6], and the number of bits re-
quired to represent all the coefficients in the node (introduced
in this paper).

Newer methods for selecting a basis approach the problem
from a rate-distortion perspective. Ramchandran and Vetterli
proposed a method that attempts to select the set of terminal
nodes that are optimal in a rate-distortion sense [11]. Their ap-
proach involves the minimization at each branch of a Lagrangian
“cost function,” , where is the average distor-
tion and is the target average bit rate. The value ofthat min-
imizes determines whether to prune and also gives the best
quantizer for that node (which is then used for uniform quantiza-
tion of the coefficients of that node). More recently, Xionget al.
have taken this idea and merged the basis optimization with their
space-frequency quantization (SFQ) approach, yielding impres-
sive results [7], [12].

III. N EW METHODS FORMULTIWAVELETS

A. Iteration of Decomposition

During a single level of decomposition using a scalar wavelet
transform, the two-dimensional (2-D) image data is replaced
with four blocks corresponding to the subbands representing ei-
ther lowpass or highpass filtering in each direction. These sub-
bands are illustrated in Fig. 2(a); for example, the data in sub-
band was obtained from highpass filtering of the rows and
then lowpass filtering of the columns. The multiwavelets used
here have two channels, so there will be two sets of scaling

2Usually this threshold is taken to be on the order of the quantization step
size.
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Fig. 2. Image subbands after a single-level decomposition for (a) scalar
wavelets and (b) multiwavelets.

Fig. 3. Conventional iteration of multiwavelet decomposition.

TABLE I
PSNR RESULTS(IN dB) COMPARING STANDARD AND NEW MULTIWAVELET

DECOMPOSITIONMETHODS

Fig. 4. Proposed iteration method for multiwavelet decomposition. Compare
to Fig. 3.

coefficients and two sets of wavelet coefficients. The multi-
wavelet decomposition subbands are shown in Fig. 2(b). For
multiwavelets, the and labels have subscripts denoting the
channel to which the data corresponds. For example, the sub-
band labeled corresponds to data from the second channel
highpass filter in the horizontal direction and the first channel
lowpass filter in the vertical direction.

Scalar wavelet transforms give a single quarter-sized low-
pass subband from the original larger subband, as seen in sub-
band in Fig. 2(a). In previous multiwavelet literature, multi-

Fig. 5. Illustration of the parent–child relationship in a three-level iterated
wavelet decomposition.

Fig. 6. Illustration of the coefficient shuffling method for one 2� 2 subband
block in the multiwavelet transform. Selected pixels are numbered to indicate
correspondence (a) before shuffling and (b) after shuffling.

Fig. 7. Subbands in a 2-level multiwavelet decomposition after coefficient
shuffling. Solid lines denote new subband boundaries and dashed lines show
subband boundaries that are removed by coefficient shuffling.

Fig. 8. Possible multiwavelet packet filter bank. Compare to Fig. 1(c).

level decompositions are performed in the same way. The multi-
wavelet decompositions iterate on the lowpass coefficients from
the previous decomposition, [the subbands in Fig. 2(b)],
as shown in Fig. 3. In the case of scalar wavelets, the lowpass
quarter image is a single subband. But when the multiwavelet
transform is used, the quarter image of “lowpass” coefficients is
actually a block of subbands—one lowpass and three band-
pass. This is due to the use of SA multifilters. The scaling
function associated with the second channel,, is bandpass
since its antisymmetric form gives a zero at .

Two conclusions may be drawn from these observations.
First, since these four subbands possess different statis-
tical characteristics, mixing them together using the standard
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TABLE II
LISTING OF TEST IMAGES AND THEIR SOURCES OFORIGIN

multiwavelet decomposition results in subsequent subbands
with mixed data characteristics. This implies that typical quan-
tization schemes that assume the statistics in each subband are
either lowpass or highpass will not give the best possible results.
Second, since only the subband is entirely comprised
of lowpass characteristics, we only need to perform further
iterations on that one subband. Experimental results demon-
strate that iterating only on the subband at each stage in
the decomposition does indeed yield better compression than
iterating on the four subbands. Some of these results are
depicted in Table I. The 1–2 dB performance improvement in-
dicated in Table I is typical of this new decomposition scheme.3

It is also worth noting the computational savings realized on
all iterations subsequent to the first: iterating on only the
subband requires one-fourth the number of computations as
iterating over the four subbands. The structure of this new
improved multiwavelet decomposition method is illustrated in
Fig. 4.

B. Quantization: Shuffling

The quantization method used to generate the results in this
paper is the SPIHT zerotree quantizer developed by Said and
Pearlman [13]. SPIHT and other zerotree quantizers achieve
good performance by exploiting the spatial dependencies of
pixels in different subbands of a scalar wavelet transform. It has
been noted [14] that there exists a spatial dependence between
pixels in different subbands in the form of a child–parent rela-
tionship. In particular, each pixel in a smaller subband has four
children in the next larger subband in the form of a block
of adjacent pixels. This relationship is illustrated in Fig. 5,
which shows a three-level scalar wavelet decomposition and
some sample pixel relations. In this figure, each small square
represents a pixel and each arrow points from a particular
parent pixel to its group of children. The importance of
the parent–child relation in quantization is this: if the parent
coefficient has a small value, then the children will most likely
also have small values; conversely, if the parent has a large
value, one or more of the children might also.

The assumptions that the SPIHT quantizer makes about
spatial relations between subbands hold well for wavelets, but
they do not hold for multiwavelets. More specifically, the three

3More information about the entries in Table I can be found in Section IV-A.

largest highpass subbands in a scalar wavelet transform are
each split into a block of smaller subbands by the multi-
wavelet transform, destroying the parent–child relationship that
SPIHT presumes [see Fig. 2(b)]. We present a new quantization
method that allows multiwavelet decompositions to receive
most of the benefits of a SPIHT-like quantizer. The basic idea
is to try to restore the spatial features that SPIHT requires
for optimal performance. Examination of the coefficients in a
single-level multiwavelet transform reveals that there generally
exists a large amount of similarity in each of the blocks
that comprise the , , and subbands, where

and .
This observation suggests the following procedure: rearrange

the coefficients in each block so that coefficients corre-
sponding to the same spatial locations are placed together. This
new procedure will be referred to asshuffling. A clearer picture
of this is given in Fig. 6. Fig. 6(a) shows one of the blocks
resulting from a multiwavelet decomposition. Eight pixels (two
from each subband) are highlighted and given a unique numeric
label. Fig. 6(b) shows the same set of pixels after shuffling. Note
that pixels 1–4 map to a set of adjacent pixels, as do pixels
5–8. This shuffling procedure restores some of the spatial de-
pendence of the pixels by moving those pixels that correspond
to a particular part of the image to the position that they would
have been located had a scalar wavelet decomposition been per-
formed.

After shuffling coefficients, a 2-level decomposition iterating
on only the block would look like the one depicted by
the solid lines in Fig. 7. Notice that the original subband
boundaries—indicated by dashed lines in the figure—have
been removed by the shuffling process. Although the coef-
ficients in this multiwavelet decomposition with shuffling
scheme are different than the coefficients in a scalar wavelet
decomposition, thestructureof the multiwavelet coefficients
in all but the smallest subband is the same as the
structure of the coefficients in a four-level scalar wavelet
decomposition. In other words, the structure of a four-level
scalar wavelet decomposition would be identical to Fig. 7
without the dashed lines—where pixels that correspond to the
same spatial locations are next to each other in each subblock
(except the smallest subblock). Experimental results in
the next section show that this new shuffling scheme improves
multiwavelet performance in many cases.
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TABLE III
PSNR RESULTS(IN dB) FOR WAVELETS AND MULTIWAVELETS FOR NATURAL

IMAGES (1.0 bpp CORRESPONDS TO AN8 : 1 COMPRESSIONRATIO)

C. Multiwavelet Packets

Just as with scalar wavelets, the multiwavelet filter bank pro-
cedure involves iterating the filtering operation on the lowpass
channel of the filter bank. And, just as with scalar wavelets, new
basis functions can be produced by iterating on the highpass
channels of multiwavelet filter banks too. This new approach
combines wavelet packet decomposition with multiwavelet fil-
ters; hence, we call it multiwavelet packet decomposition. We
define multiwavelet packets in a manner analogous to the defi-
nition of wavelet packets.

TABLE IV
PSNR RESULTS(IN dB) FORWAVELETS AND MULTIWAVELETS FOR SYNTHETIC

IMAGES (1.0 bpp CORRESPONDS TO AN8 : 1 COMPRESSIONRATIO)

Let and , and define

(7)

(8)

Note the similarity between these mulitwavelet packet equa-
tions (7) and (8) and the corresponding wavelet packet equa-
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Fig. 9. Barbara at 0.25 bpp (corresponds to a 32 : 1 compression ratio) with
Bi22/14 wavelet; PSNR= 26:85 dB.

tions, (5) and (6). Here, the tree structures that represent bases
for multiwavelet packets look just like those in Fig. 1 with the
exception that the functions in Fig. 1(c) are replaced by
the corresponding vector-valued functions . For example,
the wavelet packet tree in Fig. 1(c) has a multiwavelet version
that is shown in Fig. 8.

The basis selection algorithms and cost functions used to
prune the resulting tree structure are identical to those of the
scalar wavelet packet case with one exception: each branching
in the multiwavelet packet tree structure creates four new chan-
nels (assuming ) instead of just two. Since the mul-
tiwavelet packet tree then has four children for each parent,
the computational complexity for multiwavelet packets may be
higher than for wavelet packets. Cost function based methods
will be essentially unaffected because they just operate on all the
pixels corresponding to each node; with multiwavelet packets
there are four nodes instead of two, but each node represents
half as much data. However, methods that perform some form
of rate-distortion optimization will require more computation
due to the increased number of nodes.

IV. EXAMPLES AND FURTHER REMARKS

A. Multiwavelet Results

Image compression experiments using multiwavelets were
conducted both with and without the two new methods: iteration
of decomposition and quantization shuffling. Both orthogonal
and biorthogonal multiwavelets were tested, and all are from the
class of SA multifilters. The orthogonal SA multifilters used are
“SA4” and “ORT4” [2], [3]; for biorthogonal SA multifilters we
used “BSA7/5” and “BSA9/7” [4]. For comparison, two scalar
wavelets were used: the popular biorthogonal “Bi9/7” filter [15]
and the recently presented “Bi22/14” biorthogonal filter [16].
All tests used the SPIHT quantizer [13], and no entropy coder
was used since we were only interested in comparing the trans-
form and quantization performance. The new decompo-
sition method was used for all the multiwavelet results.

Fig. 10. Barbara at 0.25 bpp (corresponds to a 32 : 1 compression ratio) with
BSA9/7 multiwavelet; PSNR= 26:80 dB.

Fig. 11. Original Barbara, showing a close-up of the leg.

The experiments were conducted on many images. The Lena,
Barbara, Goldhill, and Mandrill images are the canonical 8 bpp
grayscale test images used frequently in the image compression
literature (1.0 bpp corresponds to an 8 : 1 compression ratio).
The Testpat2 and IC images were taken from the MATLAB
Image Processing Toolbox. The remaining images were ob-
tained from various image repositories on the Internet. Table II
provides a complete listing of the specific origins for all of the
images presented in this paper.

Tables III and IV show PSNR values for reconstructed im-
ages. The values shown in boldface represent the best result
for each image at each compression level. The “sh” following a
filter name in Table III or Table IV indicates that the new shuf-
fling procedure was used in that case. In the following tables, the
images are divided into two categories based on their character-
istics: “natural” and “synthetic.” Natural images are those which
derive directly from a real-world source (such as a photograph)
and typically have a large amount of low frequency content.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 02:09 from IEEE Xplore.  Restrictions apply.



506 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 10, NO. 4, APRIL 2001

Fig. 12. Lighthouse at 0.25 bpp (corresponds to a 32 : 1 compression ratio)
with Bi22/14 wavelet; PSNR= 26:72 dB.

Synthetic images are those which are typically generated by a
computer or a similar process; they tend to have more high-fre-
quency content than natural images and they often do not com-
press as well with traditional image compression transforms like
the discrete cosine transform (DCT) and scalar wavelets.

Immediate observations from Tables III and IV suggest
that wavelets and multiwavelets have different strengths and
weaknesses. Multiwavelets give the best performance on the
synthetic images, to the point of achieving lossless compression
(i.e., an MSE of zero) on some “geometric” images (Gray21
and Testpat2). Not surprisingly, the short-support orthogonal
multifilters SA4 and ORT4 capture the sharp transitions in
the synthetic images better than other filters. The longer
biorthogonal multifilters BSA9/7 and BSA7/5 perform best on
natural images with significant high-frequency content, such
as Goldhill, Mandrill, and Finger. Natural images with mostly
low-frequency content (e.g., Lena and Barbara) are best com-
pressed with scalar wavelets, where the Bi22/14 filter easily
outperforms all other filters. Even for these cases, however, the
BSA9/7 multifilter with shuffling sometimes outperforms the
commonly-used Bi9/7 filter.

The shuffling procedure adjusts reconstruction performance
based on the type and amount of high-frequency content in the
image being compressed. Whereas predominantly smooth im-
ages like Lena show marked gains when shuffling is used, a cor-
responding benefit is not realized for images with more high fre-
quency content. In particular, the results for Finger were not im-
proved by shuffling. Similar results are observed with the syn-
thetic images. On the very geometric Testpat2, multiwavelets
did better without shuffling, and yet shuffling helped (to varying
degrees) on the smoother Gray21, IC, and Yogi images. It should
be noted that in those cases where shuffling did improve per-
formance, the improvement could be substantial. For example,
in the Lena image, shuffling raised the performance of most
multiwavelets from underperforming the Bi9/7 filter to equal or
slightly better PSNR levels.

Fig. 13. Lighthouse at 0.25 bpp (corresponds to a 32 : 1 compression ratio)
with BSA7/5 multiwavelet with shuffling; PSNR= 26:84 dB.

Fig. 14. Original Lighthouse, showing a close-up of the fence and binoculars.

A decrease in performance as a result of shuffling is presum-
ably due to unstructured high-frequency content in the image.
Recall that shuffling regroups the pixels so that the original spa-
tial locations are preserved. In low frequency regions, the re-
grouped pixels are similar; however, in high frequency regions,
the regrouped pixels may be quite dissimilar. In this case, the
lack of significant spatial dependency means that the benefits
derived from the SPIHT quantization are limited. Thus, images
like Barbara that lack structure in the bandpass subbands due to
its high-frequency content do not experience any benefit from
shuffling. However, performance losses due to shuffling are usu-
ally small and often occur in cases where the multiwavelets out-
perform scalar wavelets. For example, shuffling coefficients in
the Finger image tended to lower the multiwavelet PSNR results
by up to nearly 0.3 dB. Even though the shuffled result for the
BSA9/7 multifilter is lower than the unshuffled result at all bit
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Fig. 15. IC at 0.5 bpp (corresponds to a 16 : 1 compression ratio) with Bi22/14
wavelet; PSNR= 30:62 dB.

rates, the shuffled result is still at least as good as the Bi22/14
scalar wavelet result at all bit rates. In contrast, when shuffling
improves performance, the improvement is often quite signifi-
cant. Hence, while the type of image being compressed has a
significant bearing on whether shuffling would be beneficial, in
general it would be safe to use the shuffling method.

In some cases, tests on images that contain large textured re-
gions (like Barbara and Finger) demonstrate that multiwavelets
can attain some of the benefits of wavelet packets (by preserving
high-frequency patterns that are lost by scalar wavelets with a
nonpacket decomposition). An illustration of this feature is de-
picted in the enlargement of two reconstructions of the Barbara
image in Figs. 9 and 10 (the enlargement of the original image
is shown in Fig. 11 for comparison). Notice that the pattern in
the pants is better preserved by the multiwavelet even though its
PSNR is slightly lower than the scalar wavelet PSNR. High-fre-
quency content that is spread over a large image region—or
which exhibits oscillations (as in the Barbara image)—is cur-
rently best preserved with wavelet packets (as the next section
will show), but multiwavelets appear to perform moderately
well without the packet-based decomposition.

Two further illustrations visually compare the best wavelet
reconstruction with the best multiwavelet reconstruction.
Figs. 12 and 13 show two enlargements of reconstructions of
Lighthouse—a natural image with a high frequency pattern
in the picket fence (the enlargement of the original image is
shown in Fig. 14 for comparison). Here the multiwavelet PSNR
is slightly higher (0.12 dB) than the wavelet PSNR. Notice in
Fig. 13 that the fence details, the edges of the binoculars, and
the outline of the background trees is better than in Fig. 12.
Figs. 15 and 16 show two enlargements of reconstructions of
IC—a synthetic image with large, smooth regions as well as
high-frequency edges (the enlargement of the original image
is shown in Fig. 17 for comparison). Here the multiwavelet
PSNR is significantly higher (1.28 dB) than the wavelet PSNR
(shuffling provided 0.96 dB of this improvement). Notice how

Fig. 16. IC at 0.5 bpp (corresponds to a 16 : 1 compression ratio) with SA4
multifilter with shuffling; PSNR= 31:90 dB.

Fig. 17. Original IC image, showing a close-up.

much closer the multiwavelet with shuffling reconstruction is
to the original than the scalar wavelet reconstruction.

The SA4 and ORT4 multiwavelets tend to perform best
on synthetic images; it is interesting to note that these two
orthogonal multiwavelets show nearly identical performance in
most situations. The BSA7/5 multiwavelet performed best on
“mixed,” natural images like Goldhill and Mandrill. Like the
Bi9/7 and Bi22/14 scalar wavelets, the BSA9/7 multiwavelet
performed best on natural images. However, while the Bi9/7
and Bi22/14 scalar wavelets perform best on smooth images
like Lena, BSA9/7 performs better on images like Finger
which have a large amount of structure (and hence some
high-frequency patterns) throughout the entire image.

B. Multiwavelet Packet Results

A second set of image compression experiments was con-
ducted using the new multiwavelet packets. Tables V and VI
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TABLE V
PSNR RESULTS (IN dB) FOR WAVELET PACKETS AND MULTIWAVELET

PACKETS FORNATURAL IMAGES (1.0 BPP CORRESPONDS TO AN

8 : 1 COMPRESSIONRATIO)

TABLE VI
PSNR RESULTS (IN dB) FOR WAVELET PACKETS AND MULTIWAVELET

PACKETS FORSYNTHETIC IMAGES (1.0 BPP CORRESPONDS TO AN

8 : 1 COMPRESSIONRATIO)

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 02:09 from IEEE Xplore.  Restrictions apply.



MARTIN AND BELL: NEW IMAGE COMPRESSION TECHNIQUES 509

show PSNR values for the reconstructed images using wavelet
packets and multiwavelet packets. The number in parentheses
following a filter name in either of these tables indicates which
cost function was used for that case. Cost function “1” computes
the cost as the number of significant coefficients4 in the tested
node. Cost function “2,” a new measure that we are proposing,
computes the cost as the total number of bits required in the
binary representation of all the coefficients in that node.

The results in Tables V and VI suggest multiwavelet packet
performance is mixed. While the multiwavelet packets typically
give the best results for the synthetic images, wavelet packets
give the best results for the natural images with few exceptions.
These results are similar to the nonpacket tests in Tables III and
IV, except now the multiwavelets show weaker results for the
natural images. For the Barbara image, the best wavelet packet
result at each bit rate outperformed the best multiwavelet packet
result by between 1 and 1.5 dB. However, the multiwavelet
packets performed best at 1 bpp for the Goldhill and Mandrill
images, and for Mandrill a multiwavelet packet result could be
chosen at each bit rate that essentially equaled the best scalar
wavelet packet result. Multiwavelet packets gave predominantly
better results on the synthetic images. In particular, the SA4 and
BSA7/5 multiwavelet packets achieve perfect reconstruction on
the highly geometric Testpat2 image at 1 bpp.

The authors presume that multiwavelet packets performed
relatively poorly on the natural images because the iterated mul-
tiwavelet transform produces a different subband structure than
the wavelet transform. The standard wavelet transform struc-
ture assumed by SPIHT does not match the multiwavelet packet
structure very well and hence some performance is lost due to
nonideal quantization. While the coefficient shuffling method
introduced in this paper improved multiwavelet performance
with the SPIHT quantizer, no similar method currently exists
for multiwavelet packets and SPIHT-like quantizers. The use of
a different quantization method, such as a uniform scalar quan-
tizer, should give better results for multiwavelet packets. Cost
function “2” gives the best results in most cases; this is to be ex-
pected since this cost function was chosen to work well with the
SPIHT quantization method used here. However, a basis selec-
tion method based on a rate-distortion approach [7], [11], [12]
would most likely result in better performance than the simple
cost-function method used here.

V. CONCLUSIONS

Two new methods for improving the multiwavelet trans-
form have been proposed in this paper: a new multiwavelet
decomposition that iterates only on the subband, and
a coefficient shuffling method to improve performance with
zerotree-based quantizers. Both methods have been shown to
improve the performance of multiwavelet image compression in
many cases. While the improved decomposition iteration gives
uniformly better results, the performance gains of shuffling
depend on the image content. Shuffling helps most images with

4In this case, the threshold used for significance testing is simply 0.5, the
threshold below which a coefficient will be converted to 0 during integer con-
version.

more low-frequency content; images with more high-frequency
content typically realize no significant performance benefit and
in some cases, performance is degraded. However, performance
decreases tend to be quite small whereas performance increases
from shuffling are often quite significant. Although this result
was not unexpected, a more thorough understanding of why
shuffling improves the compression and reconstruction of
images with predominantly low-frequency—and not high-fre-
quency—content remains to be developed.

The other new contribution of this paper—multiwavelet
packets—outperformed wavelet packets on images containing
large amounts of high-frequency content that is either mostly
unstructured (as in Mandrill) or geometric or regular in nature
(e.g., Testpat2, Testpat_1k, and IC). However, wavelet packets
exhibited better performance on most of the natural images.
Moreover, it was shown that multiwavelets can achieve some
of the benefits of wavelet packets without the computational
expense of the packet-based decomposition.

It should be pointed out that the scalar wavelets used here
represent the best known filters published after years of study.
In contrast, the multifilters used here are still quite new—many
have only been discovered within the past two years. Never-
theless, the multiwavelets used in this paper depicted perfor-
mance equal to the best scalar wavelets in many cases. While
the Bi22/14 scalar wavelet gave consistently good performance
for natural images, in most cases, a multiwavelet should give
similar performance with lower computational complexity. Sim-
ilarly, in many cases, a multiwavelet packet resulted in similar
performance with lower computational complexity than the best
scalar wavelet packets. This indicates that multiwavelets are a
viable alternative to scalar wavelets in many situations.

The techniques presented in this paper produce some of
the best-reported results to date for multiwavelet-based image
compression compared to wavelet-based methods. Nonetheless,
there is always room for improvement. Since multiwavelets
are a relatively new subject of study, only a few construction
methods have been published. While the latest published
methods can construct SA multiwavelets with desirable mag-
nitude response characteristics, most current filters have few
orders of approximation.5 Future construction methods that add
higher orders of approximation while preserving the desirable
features of the current methods would most likely result in
multifilters that perform even better in image compression
applications. Also, methods for reducing the computational
complexity of multiwavelets would be helpful, such as factoring
the multifilter into a cascade of shorter multifilters (as Meyer
et al. do for scalar wavelets [6]) and implementation of the
multifilter via the lifting scheme.6 Finally, good results have
been presented for applying multiwavelets to the denoising of
1-D and 2-D signals [1], [5], [17]. Combined with the success
shown here for multiwavelet image compression, it seems
likely that multiwavelets may work well for the compression
of noisy images.

5For example, the SA4 multiwavelet has only one approximation order, while
the Bi9/7 scalar wavelet has four.

6Use of the lifting method could also result in multifiltering methods which
can be performed “in place.”
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