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Algorithms for the Decomposition of 
Gray-Scale Morphological Operations 

Ronald Jones and Imants Svalbe, Member, IEEE 

Abstract- The choice and detailed design of structuring el- 
ements plays a pivotal role in the morphologic processing of 
images. A broad class of morphological operations can be ex- 
pressed as an equivalent supremum of erosions by a minimal 
set of basis filters. Diverse morphological operations can then be 
expressed in a single, comparable framework. The set of basis 
filters are data-like structures, each filter representing one type 
of local change possible under that operation. The data-level 
description of the basis set is a natural starting point for the 
design of morphological filters. 

This paper promotes the use of the basis decomposition of 
gray-scale morphological operations to design and apply mor- 
phological filters. A constructive proof is given for the basis 
decomposition of general gray-scale morphological operations, as 
are practical algorithms to find all of the basis set members for 
these operations. Examples are given to illustrate the algorithms 
presented. 

Index Terms-Cray-scale morphology, mathematical morphol- 
ogy, morphologic basis decomposition. 

NOMENCLATURE 

the functions f, g, k 
the sets F, G, K 
n-tuple elements of a set 
Euclidean N-space 
f maps F to E 
operations on an image f 
erosion 
dilation 
open 
close 
the supremum operator 
the infimum operator 

I. INTRODUCTION 
RAY-SCALE morphology uses roving surface patches, G known as structuring elements, to explore, through local 

pattem matching, the shapes contained in gray-scale images. 
The structuring elements act as template-like shapes used to 
extract shape dependent information from signals or images. 
Overviews of gray-scale morphology can be found in [ 11-44], 
[20]; we use the definitions of the fundamental morphological 
operations given in [l]. 
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A .  Previous Work 
The foundation for this work is provided by Matheron's 

theorem [5] which demonstrates that certain broad classes of 
morphologic operations have an exact, parallel representation 
as a union of erosions (or dually as an intersection of dilations). 
Maragos [6] and Giardina and Dougherty [7] extended this 
theorem to gray-scale morphology, and introduced the concept 
of the basis as an equivalent and minimal description of an 
operation. Further extensions have been made by Banon and 
Barrera to all translation-invariant set mappings (not necessar- 
ily increasing) [ 171 and to all mappings between lattices [ 181. 
The basis representation has seen practical implementation in 
the work of Dougherty and Loce [ 161, where it has been used 
to design optimal morphological filters, and in the work of 
Khosravi and Schafer [ 191, where it has been used to represent 
linear filters. Recent work [9] reports an algorithm for the 
minimal basis decomposition of the binary close operation and 
surveyed some of the properties of discrete basis sets and the 
relationships between set members. To qualify for basis set 
membership, shapes must satisfy certain constraints and limits 
on the size of such sets have been reported [5]-[8]. Basis 
decomposition can also be used to represent linear averaging 
and order-statistic filters [6], [8]. The basis representation 
is a result of theoretical importance and practical utility 
but, although its existence is well known, systematic general 
algorithms to generate the basis sets have not been available 
until now. 

B .  Scope and Organisation of this Work 

The basis decomposition of morphologic operations pro- 
vides three advantages: 
1) full exploitation of the inherent parallelism in the morpho- 

2) a complete data-level description of the effects an opera- 

3) the capability to distill the effect of many small data level 

This paper provides a theoretical formalism and practical 
algorithms to find the basis set for any gray-scale morpholog- 
ical operation that has an algebra consisting of four operators: 
supremum, infimum, erosion and dilation. The results obtained 
apply to a broad range of useful operations. Basis decom- 
position of binary morphological operations is obtained as a 
particular case of the gray-scale theory. 

Basic morphological operations, the kernel and the basis 
representations are defined in Section 11. 

logic processing of images; 

tion has on local pixel distributions in any image; 

changes into a single operation. 
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Our general basis decomposition result is presented through 
the development of two tools. The first tool, given in Section 
111, generates the basis set for a serial suprema of erosions. The 
second tool, given in Section IV, shows how to generate, for 
any supremum of erosions, the equivalent (dual) set of basis 
filters expressed as an infimum of dilations, and vice-versa. 
This result enables these operations to be interchanged, so 
that our result for a serial suprema of erosions can be applied 
more generally. 

Section V combines the tools developed in Sections 111 and 
IV and applies the methods developed to decompose the gen- 
eralised open and close operations. Section VI is a summary 
of the work presented and surveys practical applications and 
theoretical extensions of the methods developed. 

C .  Basis Versus Structural Decomposition 

Basis decomposition differs from the approach of structural 
decomposition of structuring elements [ 101, [ 111. Structural 
decomposition explores alternative representations of a shape 
as an equivalent sequence of dilations by smaller geometric 
sub-shapes and seeks to find minimal expressions to achieve 
this. Structural decomposition simplifies the implementation 
of structuring elements with large area masks by enabling a 
series of masks with smaller regions of support, compatible 
with common hardware capacity, to be used. The shapes pro- 
duced by structural decomposition result more from hardware 
restrictions rather than geometric considerations. 

11. DEFINITIONS 
A. Gray-Scale Operations 

A gray-scale image may be considered as a function which 
maps pixel coordinates to gray-scale values. A structuring 
element, which is similarly defined, interacts with the image to 
modify it. For a gra-y-scale image f and structuring element g 
the erosion and dilation operations are defined respectively as 

(f @ g)(x) = SUP - 2) + d z ) )  (2) 
% EG, (2- %)E F 

where f : F --t E ,  g : G -+ E and F,G E EN-' 111. 
In this paper we work in Euclidean N-space and the infi- 

mum (inf) and supremum (sup) operators are used throughout. 
If the underlying space is discrete these operations may be re- 
placed by the minimum and maximum operations respectively. 
We adopt the convention that a function has a value of negative 
infinity outside the region of its support. This simplifies the 
use of the infimum and supremum operators over functions 
with different support. 

We assume that any structuring element g : G ---f E has a 
support G which is afinite set. This assumption is a necessary 
requirement for the basis sets to have a finite number of 
members. 

B. The Kernel Representation 

supremum of erosions must have two important properties. 
Morphological operations which can be represented as a 

1 )  The Operation is Translation-Invariant [TI): An opera- 
tion $ on a gray-scale image f is TI iff 

where fy(x) = f(x - y) is the translation of f along y, and 
c is a translation of the amplitude of f. 

2 )  The Operation is Increasing: An operation $ on gray- 
scale images f and g is increasing iff 

Erosion, dilation, open and close are examples of TI in- 
creasing operations. If any operation $ is TI increasing then 
it can be equivalently expressed as a supremum of erosions, 
such that [5]-[7] 

The set of filters {gi} directly depend on the operation 
$ performed on the image, but not on the image f .  A 
constructive method to find all the members of the filter set 
for any given operation $ is required. The kemel K ( $ )  of the 
operation $ is defined to be 

The kernel contains the sets of filters {si} that satisfy (3). 
The set of filters {gi} may be interpreted as images or data 
structures in an image. The constraint on gi in (4) can be seen 
to arise by replacing f with gi in (3) ,  as equation (3) must 
hold for all images f, including the image of gi. 

Unfortunately, the kernel cannot be applied practically as 
it contains an infinite number of members. For any E 
K ( $ )  there are an infinite number of functions gj 2 g; 
(called superfunctions of 9;) that will also be members of 
the kernel. However, superfunctions are redundant when used 
in a supremum of erosions: If g2, g1 E {gi} where g2 is a 
superfunction of g1 then g2 2 g1 * f 692 I f 8 g l  and hence 
the supremum of f e g 2  and f e g l  is always f e g 1 .  Similarly, 
g2 2 g1 + g2 is redundant in an infimum of dilations. 

The basis B($)  contains only the non-redundant members 
of the kernel, and is defined [6] as 

Equation (3) can now be written exactly as 

The set of filters {g;} in (6), which is referred to as a 
basis set, is the minimal set of filters that represents directly 
the effects of the operation $ on an image. The basis set 
can be analysed to explore the exact properties of a given 
operation. The effects of different morphological operations 
can be viewed on common ground when each is expressed as 
a supremum of erosions, as the various properties of different 
operations are manifest as differences in the basis sets. 
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111. SERIAL EROSIONS AS SINGLE EROSIONS 

In this section the first part of our general basis decomposi- 
tion result is established by computing the decomposition set 
for a serial suprema of erosions. Consider an operation $J that 
is a cascade of two operations I9 and 4, where 

and 

$ ( f )  = 4 ( 0 ( f ) ) *  (7) 

The operation $J has a basis set which depends on the basis 
sets for 0 and 4. A procedure to find the basis set for $J can be 
applied to any operation that is a cascade of two TI increasing 
operations. The open-close, close-open operations and two 
passes of a median filter are examples of such operations. 
Furthermore, this procedure can be applied iteratively to allow 
the decomposition of arbitrarily long cascades of TI increasing 
operations. 

A. A Parallel Expression for  Serial Erosions 
The following theorem provides the decomposition set for 

a serial suprema of erosions in terms of the filter sets {a,} 
and {b,}. The proof appears in the Appendix. 

Theorem 1: Let f be a gray-scale image and {a,} and 
{b,} be two sets of gray-scale filters. Let B, = {z,,, : i = 
1,. ' .  , x(B,)} be the support of the function b, : B, + E, 
where B, C EN-' ,  and x(B,) is the cardinality of B,. 
Define the pulse functions b,,, : {z,,,} -+ E to map a 
single coordinate zn,, E B, to a gray-scale value b,,,(z,,,) = 
bn(zn,z). Then, 

where 

Note that the filter sets {a,} and {b,} consist of a finite 
number of filters, each with finite support, and that therefore 
the number of filters in the resultant decomposition set (8) 
is finite. However, it is not a basis set as it is possible for 
members of the set to be superfunctions of other members. 
Theorem 1 provides a finite decomposition set for any serial 
suprema of erosions which subsequently can be sorted for 
non-redundant members to obtain the basis set. The level of 
redundancy is not predicable as it is a function of the structural 
overlap of the (arbitrary) a, and b, filters. The possibility of 
redundancy arises because all possible filter combinations are 
allowed and must be considered. 

B. An Algorithm to Compute the Basis Set for Serial Erosions 
The following algorithm can be used to compute the basis 

members of the decomposition set { c , , , ~  ,..., from the 
given filter sets {a,} and { b , } .  

Algorithm I : 
Step 1: Select a filter b from the set {b,}. Define x ( B )  
as the cardinality of B (i.e x ( B )  is the number of pulse 
functions b, that make up b). 

Step 2: Choose a filter a,, from {a,} for each of the 
pulse functions b,. 
Step 3: Form the gray-scale dilation b, @ a,% using equation 
(2) for each b,. 
Step 4: The filter c , ~ ,  ,m,(B) is formed by taking the 
supremum of all these dilations. For a particular coordinate 
(3 the supremum result of these dilations at (2) is taken 
as the value for cml,  ,m,(B,(2). 
Step 5: Repeat STEP 2 to STEP 4 for every possible 
association of a,% with the pulse functions b,. 
Step 6: Repeat STEP 1 to STEP 5 for each of the filters b, in 
the filter list { b,} to form the complete set of decomposition 
filters { C n w i ,  ,m,(Bn)>- 

Step 7: Remove the redundant filters from the set 
{c,,,~, to form the basis set. A filter C R  is 
redundant if c ~ ( 2 )  2 c(2), for all (2) in the support of c, 
where c is another member of the filter list. 
If M is the number of members in the basis set {a,} and 

N is the number of members in {b,} then the total number of 
members in the decomposition set { c,,,, , ,,,( Bn ~ } is given 
by C = I,"=, MX(Bn). Usually many of these members 
will be redundant however and will not be members of the 
final basis set. How to predict the number of members in the 
final basis set is not known but it will always have an upper 
bound of C. Assuming that the time necessary to compute each 
dilation b, @ a,% is a constant IC for all associations of b, and 
amt then the total amount of time necessary to compute the 
decomposition set is IC x C. Of course, C will increase rapidly 
as the size of the input sets increase and this may eventually 
lead to computational difficulties. Here the amount of memory 
required to store the decomposition set before it is reduced 
to the basis set is of more concem than the total computation 
time, as the time constant IC for each computed dilation is very 
small. In practice the storage problem is mitigated by removing 
redundant members as they are computed (by comparing 
them to the existing basis elements that have already been 
computed). In such a way only members of the basis set are 
stored in memory at any given time. 

As an example, consider the set of three (flat) filters {g,}  
in Fig. l(a). A supremum of erosions using these three filters 
is equivalent to a I-D median filter with a window W = 
{ ( - l , O ) ,  ( O , O ) ,  (1 ,O) )  [8]. Figures l(b) and l(c) illustrate the 
basis sets that represent two and three passes of this filter 
respectively. The set {h,} in Fig l(b) was computed using 
Algorithm 1 with {a,} = {b,} = {g,} and consists of 5 
basis members derived from a decomposition set of C = 27 
members. The set in Fig. l(c) was computed using {a,} = 
{h,} and {b,} = (9,) and consists of 7 basis members derived 
from a decomposition set of C = 75 members. The procedure 
can continue in this manner to decompose an arbitrary number 
of applications of the filter. 

Iv. MAPPING TO THE DUAL BASIS SET 

A. The Dual Representation 

Any supremum of erosions can be equivalently expressed 
as an infimum of dilations using the dual filter set. To provide 
greater flexibility in the decomposition of morphological op- 
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Fig. 1 .  Basis sets for a 1D median filter defined in a window It' = { ( - l , O ) , ( O . O ) , ( l , O ) } .  (a) The basis set (9 , )  for one pass of the filter. (b) The basis 
set { h , }  for two passes. (c) The basis set for three passes. The origin is marked by the box in bold type. The number " 0  indicates that that coordinate 
has a gray-scale of zero, the "." sign indicates the filter is undefined at that coordinate (and has a value -m). 

erations, a constructive algorithm establishing a link between 
dual filter sets is required, in order that one set may be 
calculated from the other. The following theorem establishes 
shch a relationship (the proof appears in the Appendix). 

Theorem 2: Let f be a gray-scale image and {g,} be 
a set of gray-scale filters. Let G, = {z , ,~  : i = l , . . . ,  
card(G,)} be the support of the p t i o n  g, : G, + E, where 
G, EN-' .  Define the pulse functions gn,z : {z , ,~ }  + E 
to map a single coordinate z,,, E G ,  to a gray-scale value 
gn,,(zn,;) = gn(zn,,). Define the reflection of a function g,,, 
as j,+(z) = gn,z ( -z ) ,  and define N as the number of g, 
filters. Then, 

where 

Conversely, from a given set {g,} used in a supremum of 
erosions, the set { k,, , , 2 N  } required for an equivalent infimum 
of dilations operation can be computed. The proof deriving 
{k,,, r 2 N }  is similar to Theorem 2, and the result is stated 
without derivation in the following theorem. 

Theorem 3: Using the definitions of Theorem 2, 

supf 09,  = inf f @ k1, , Z N '  
n 2 1 ,  , 2 N  

Note that the filter set {kt l ,  . . . , iN} in Theorem 3 is identical 
to that in Theorem 2. 

B.  An Algorithm to Compute the Dual Basis Set 

The following algorithm can be used to compute the basis 
members of the dual filter set { k 2 , ,  , z N }  from a given filter 
set {gn} .  

Algorithm 2: 
Step 1: Transform the set {g,} to the set {-ij,}, where 

Step 2: Select one pulse function -in,, from each of the 
filters -5, 
Step 3: A filter kzl,  . r Z N  is formed by combining all the 
selected pulse functions into one filter. If several pulse 
functions have the same coordinate but different gray-scales 
then the supremum gray-scale is chosen for that coordinate. 
Step 4: Repeat Steps 2 and 3, selecting every possible 
combination of pulse functions. 
Step 5: Remove redundant filters as in Step 7 of Algorithm 1. 

-ijn(.) = -gn( -z ) .  

If N is the number of members in {g,} and x ( G , )  is 
the cardinality of G ,  (i.e. the number of pulse functions 
that make up gn) then there are II:=,x(G,) members in 
the decomposition set {k,,, ,zN}. The number of elements 
in the final basis set will always be less than this upper bound, 
though we have not been able to predict an exact figure. The 
computation time for the algorithm is also directly proportional 
to this factor. Each filter kZl , .  . , 2 N  will consist of N pulse 
functions (one from each filter -in) but there is often overlap 
between each -in and so the number of pulse functions in 
kzi , ,zN is usually less than N .  In practice any computational 
difficulties that may arise for large input sets can be offset by 
removing redundant members as they are computed. 

Note that if the dual filter set { k 2 , ,  , z N  1 is used as the 
input to Algorithm 2, the resultant output will be the original 
set {g,}. The algorithm will be used in the following section 
to decompose the open and close operations. 

v. DECOMPOSITION OF THE OPEN AND CLOSE OPERATIONS 
The dual morphological operations of opening and closing 

are serial operations defined respectively as 

f o g  = (fed $ 9  (9) 
f . g = ( f w ) e g .  (10) 

These operations can be applied in a more general form 
using multiple structuring elements. For example, Song and 
Delp used multiple structuring elements to remove impulse 
noise in images [12], and Stevenson and Arce used multiple 
structuring elements in a line preserving filter [13]. The 
operations were applied as a supremum of openings and an 
infimum of closings. Both operations can be decomposed into 
basis filters and have a basis representation 

s u p f o g ,  = s u p f e k ,  = i n f f $ k 2  ( 1  1) 

inf f og, = supf  e k z  = inf f @ I C , .  (12) 
n 2 2 

n z 2 

The basis sets {k,} and {k ' }  in equation (1 1) are identical 
to those in (12), reflecting the duality of the open and close 
operations as demonstrated in [51-[71. 

Often the effects of one operation will be provided partially 
by another operation [ 141, [21]. Combining multiple operations 
will be. inefficient if the effects of the constituent operations 
overlap. The basis set for the combined operation is the mini- 
mal description of the operation, representing any overlapping 
properties only once. It can have less members than the basis 
sets for the constituent operations. An example demonstrating 
this is given in Section B. 
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Fig. Basis sets for the multiDle oDen an = .  close operations. (a) A set of four structuring elements. (b) The basis set for opening. (c) The basis set for 
closing. (d) A single "L" type structuring element with gray-scale weights. (e) The basis set for closing. The origin is marked by the box in bold type. The 
numbers in the boxes indicate gray-scale values at coordinates. The "." sign indicates that the filter is undefined at that coordinate. 

A. Basis Sets for the Open and Close Operations 
The multiple open operation (1 1) can be decomposed into 

basis filters as follows. Each open is an erosion followed 
by a dilation (9). The dilation can be decomposed into a 
supremum of erosions using Algorithm 2. Each open is then a 
serial suprema of erosions, and by using Algorithm 1 can be 
expressed as a single supremum of erosions. Each supremum 
of erosions, corresponding to each open, can then be grouped 
under the initial supremum operator to form a single supremum 
of erosions. 

An explicit expression for the decomposition set for opening 
operation is given below (proof in Appendix). 

Corollary 1 :  Using the definitions of Theorem 2, 

supf 0 gn = f e h,z 
n n,z 

where 

k . 2  = (-Sin,z) fI3 gn. 

The decomposition set for the multiple close operation (12) 
can be obtained from a similar procedure as that outlined above 
for the opening. An explicit expression for the decomposition 
set for closing is given in the Appendix. 

B. An Algorithm to Compute the Open and Close Basis Sets 

The duality between the basis sets in (1 1) and (12) indicates 
that given the basis set for opening { k 2 }  in (11), the basis set 
for closing { k ' }  in (12) can be computed using Algorithm 
2, and vice versa. The following algorithm can be used to 
compute the basis sets for opening and closing, given a set 
of structuring elements {gn} .  Note that we use the open and 
close duality by computing the basis set for closing from the 
basis set for opening, through Algorithm 2. 

Algorithm 3: 
Step 1: Select a structuring element g from the set { g n } .  
Step 2: Transform g to -5. 
Step 3: Select a pulse function -it from -$. A basis 
filter for the open operation is computed by forming the 
gray-scale dilation ( - S i 2 )  @ g using equation (2). 
Step 4: Repeat Step 3 for every pulse function -5% in -5. 
Step 5: Repeat Step 1 to Step 4 for every structuring 
element gn to complete the basis set for opening. 
Step 6: The basis set for closing is computed using 
Algorithm 2, taking the basis set for opening computed 
above as the input set {gn} .  

If N is the number of structuring elements in the set { g n }  
and x(G,) is the number of pulse functions that make up 
gn then the total number of elements in the decomposition 
set for opening is given by x(G,). The time taken to 
compute the set is directly proportional to this factor. Clearly 
this will not pose any computational problems even for very 
large input sets. The basis set for closing has parameters that 
have already been associated with Algorithm 2 for computing 
the dual basis. 

Fig. 2(a) shows a series of four "L" type structuring el- 
ements (as used by Song and Delp [12]). The structuring 
elements are to be used in the multiple open (1 1) and close 
(12) operations. Illustrated in Figs. 2(b) and (c) are the basis 
sets for opening and closing respectively. The basis set for 
the multiple opening has twelve members, and therefore the 
parallel implementation of the opening would be easier as an 
infimum of dilations using the eight members of the basis 
set for closing. The basis implementation (eight erosions in 
parallel for the closing) competes favourably with the standard 
serial implementation (four dilations followed by four erosions 
in parallel for the closing). 

N 
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El@ ma m El m m  
(a) (b) (C) 

(d) ( e )  
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Fig. 3. Basis sets for the open-close and close-open operations. (a) A structuring element with coordinates { (0 .0) .  (1. O ) } .  (b) The basis set for opening. 
(c) The basis set for closing. (d) The basis set for the close-open operation. (e) The basis set for the open-close operation. The origin is marked in bold type. 
Numbers indicate gray-scale values at those coordinates, the "." sign indicates that the filter is undefined at that coordinate. 

In Fig. 2(d) is one of the "L" type structuring elements with 
arbitrary gray-scale weights. The corresponding basis set for 
closing is shown in Fig. 2(e). The basis set for this gray-scale 
structuring element has nine members, whereas the basis set 
for the multiple closing has only eight members. The number 
of basis filters is less due to the overlapping support of the 
four structuring elements. Note that the basis set for a single 
flat "L" also has nine members, although in general the choice 
of gray-scale weights will affect the number of filters in the 
resultant basis set. The number of basis filters resulting from 
gray-scale decomposition is always equal to or greater than 
that for flat structuring elements, due to the extra degree of 
freedom afforded by the gray-scale weights. 

VI. APPLICATIONS, EXTENSIONS, AND FUTURE WORK 

A .  Applications of the Basis Representation 

Parallel Implementation: Executing image transformations 
as parallel operations has the advantage of maximising pro- 
cessing speed and is attractive as it conforms to plausible 
models of the human visual system. Parallel expressions 
often give a clearer insight into the detailed workings of an 
operation. Expressing cascaded morphological operations as a 
single supremum of erosions removes the need to visualize in- 
termediate steps and provides a template-like filtering process. 
The disadvantage of parallel processing lies in the time- 
for-memory-trade-0% complex sequential operations generate 
many valid permutations of data, with potentially large sup- 
port, which need to be tested in one pass. 

In binary morphology, a basis can be treated as a set of 
binary templates which target data structures in the image 
that match the templates. They can then be placed into a 
look-up table (LUT) to effect a parallel implementation of 
the operation [15]. Consider for example the set of flat basis 
filters illustrated in Fig. 2(c). These eight basis filters all 
lie within a 3 by 3 region of support, in which there can 
form 2(3x3 )  = 512 possible binary data pattems. Each basis 
filter forms its own binary data pattern which is coded as an 
address vector indexing a 512 entry LUT. The LUT is set 
to ON for image pattems that match the pattem of a basis 
filter, and OFF for other pattems. In total the implementation 
requires a 3 by 3 convolution (with kernel weights 2a ,  0 I 
i 5 8) to obtain the address vector for each data pattem, 
followed by a point-wise mapping through the LUT. For 
regions of support that are larger than 3 by 3, overlapping 
512 byte LUT's can be used [15]. The use of LUT's, made 
possible by the basis representation, is particularly attractive 
when multiple structuring elements are being used, as the 

standard implementation of multiple structuring elements is 
more complex. 

Data-Level Description: It has been shown that the basis 
representation can simplify morphological operations that use 
multiple structuring elements. The basis set also allows direct 
comparison of distinct but complementary operations. For 
example, the open-close and close-open operations are known 
[8] to bound the original image and the output from the median 
filter. The detailed differences between these operations is 
evident in their basis decomposition sets. 

Illustrated in Fig. 3(a) is a flat 2 by 1 structuring element 
with coordinates { (0, 0), (0 , l ) ) .  The opening and closing basis 
sets for this structuring element, computed using Algorithm 3, 
are illustrated in Figs. 3(b) and 3(c) respectively. Using {a,} 
as the basis set for opening and { b , }  as the basis set for 
closing, Algorithm 1 can be used to compute the basis set for 
the close-open operation, as shown in Fig. 3(d). In a similar 
way the open-close operation can be decomposed. That basis 
set is shown in Fig. 3(e). 

The basis representation allows visual comparison between 
the detailed effects of disparate operations. It offers a unified 
description which reveals relationships that may be difficult to 
establish theoretically. For example, the basis sets reveal the 
relative extensive and antiextensive properties of operations. 
Every filter in Fig. 3(d) is a superfunction of some filter in 
Fig. 3(e). As g1 2 g2 + f e g1 I f 8 g2 this implies that a 
supremum of erosions with the filter set in 3(d) is contained 
in a supremum of erosions with the filter set in 3(e). For this 
particular example, ( f o g )  0 g 5 (f 0 g) o g (this relation does 
not hold for an arbitrary structuring element). By considering 
the basis sets in Figures 3(b) and 3(c), the relation may be 
extended to f o g 5 ( f o g )  0 g 5 (f 0 g )  o g 5 f 0 g. 

These basis sets may be compared to that for the three point 
median filter in Fig. 1 .  If med,(f) denotes n passes of the 
median filter, it is apparent that ( f  o g) 0 g 5 medl(f) 5 
(f 9 )  0 g, ( f  0 9) g L medz(f) I ( f  9 )  0 g7 and that 
(f  o g) 0 g 5 med3(f) 5 (f 0 g) o g. This visually illustrates 
that the median filter in 1D is bounded by the open-close and 
close-open operations [8]. Note that the above conclusions are 
independent of the image f but are particular to the structuring 
element chosen. 

Tailoring Filters: By first identifying the structures in an 
image that need to be changed or preserved, it is possible 
to construct from this chosen set a serial operation that best 
approximates the required result. Because adding or subtract- 
ing individual basis filters makes only small differences to the 
total final result, very fine control over the filtering process 
is possible. This approach is preferable to choosing additional 
structuring elements to achieve the selectivity required. 
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Ultimately, the degree of change in a filtered image depends 
on the image; basis decomposition allows a constructive 
mechanism to fine tune the filter characteristics in an image 
independent way. 

B. Extensions and Future Work 

Basis Shape Properties: We are examining the basis sets 
given systematic changes to two- and three-dimensional struc- 
turing elements on rectangular and hexagonal lattices, to 
characterise the growth of the basis sets and the grouping of 
common types of data structures within the basis sets. 

The algorithms we have presented involve the computation 
of a finite decomposition set for an operation which can 
subsequently be sorted to form the basis set. Redundancy 
within basis sets becomes an important issue when there are 
a large number of multiple structuring elements, or when the 
structuring elements have a large support, as the number of 
basis filters that must be selected and sorted for redundancy 
diverges rapidly. We are investigating algorithms that will 
select basis filters directly. 

Idempotent Basis Sets: Idempotence is an attractive prop- 
erty of some morphological operations (such as open and 
close). Successive applications of such operations leave an 
image unchanged, that is, all possible changes to an image 
occur after one application of the operation. If an operation 
$( f )  = supn f 8 gn is an idempotent TI increasing operation, 
the idempotent property is explicitly represented by the basis 
filters, and is expressed by the relation 

For this equation to hold, Theorem 1 indicates that the set of 
filters {gn}  must be of the form as given by equation (8). The 
circumstances under which a general supremum of erosions 
becomes idempotent are of interest with respect to the design 
of idempotent morphological operations. 

Structuring Element Synthesis: Isolated data structures that 
resemble close basis filters are good candidates from which 
representative filters can be synthesized. The mechanism to 
synthesize structuring elements from basis filters usually in- 
volves the conversion of the basis set for the close operation 
to the dual open set. Because members of the open set are 
coherent translates of the structuring element, it is possible 
to identify compact structures that represent the initial set of 
structures taken from the data. We need to refine ways to 
select appropriate pools of input data filters and to improve the 
translate matching process to help extract these representative 
structuring elements. 

The tools provided in this work can be used to obtain 
the basis decomposition for a wide variety of morphological 
operations. They have application to the design of selective 
filters and to evaluate the feasibility of parallel implementation. 
The basis representation should play a more significant role 
in the design of morphological operations, as the detailed 
differences in the operations are clearly manifest as differences 
in the basis filters. Such an approach should be used to avoid 
the heuristic choices adopted when deciding which operation, 

and which structuring elements, should be used to process 
images. 
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APPENDIX 

The following transform properties will be used in the 
proofs of the theorems in this paper. 

f @ 9 = 9 @ f  (AI) 
(A21 

f e ( s u p g i )  2 = iqff  e si 644) 

(fed 8 IC = f e (9 e I C )  
f e ( s u p 9 ; )  2 = s u p f e g z  2 (A3) 

The following two properties concern a pulse function p that 
maps a single element of EN-' to E 

Proof of Theorem 1 

Proof of Theorem 2: 

inf f @ gn = inf f @ (supg, , i )  (by defn.) 
2 

= i$(sU~ 2 f (gn, i )> [A31 
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Corollary 2:  The decomposition set for the multiple close 
operation. Using the definitions of Theorem 2, and defining 
x ( G n )  as the cardinality of Gn,  

inf f e g n  = SUP n ~ i , i ~ . ~ ~ ~ ~ i , x ( ~ ~ ) , ~ . . , ~ ~ , i ~ ~ ~ . ~ 3 ~ , x ( ~ N )  

f e kji, i , . .. ,ji, ( G ) 1 .  .. , j N ,  i ... ,jN, x ( G ) 

where 
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