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Symmetry Detection by Generalized

Complex (GC) Moments:
A Close-Form Solution

Dinggang Shen, Horace H.S. Ip,

Kent K.T. Cheung, and Eam Khwang Teoh

Abstract—This paper presents a unified method for detecting both
reflection-symmetry and rotation-symmetry of 2D images based on
an identical set of features, i.e., the first three nonzero generalized
complex (GC) moments. This method is theoretically guaranteed to
detect all the axes of symmetries of every 2D image, if more nonzero
GC moments are used in the feature set. Furthermore, we establish
the relationship between reflectional symmetry and rotational
symmetry in an image, which can be used to check the correctness
of symmetry detection. This method has been demonstrated
experimentally using more than 200 images.

Index Terms—Symmetry detection, reflectional and rotational
symmetry, symmetric axis, generalized complex (GC) moments,
fold number, fold axes, rotationally symmetric image, reflection-
symmetric image.

————————   F   ————————

1 INTRODUCTION

SYMMETRY, as one of the basic features of shapes and objects, has
been studied extensively in the computer vision area. Symmetrical
descriptions of shapes and the detection of symmetrical features of
objects are very useful in guiding shape matching, model-based
object matching and object recognition [1], [2], [3], [4]. Symmetrical
information is also useful in robotics for recognition, inspection,
grasping, and reasoning [5]. Usually, symmetry is considered as a
binary feature, i.e., an object is either symmetric or not symmetric.
For quantifying the symmetry of objects, symmetry can also be a
continuous feature [7].

Rotational symmetry and reflectional symmetry are two com-
monly studied types of symmetries. A 2D image is said to be re-
flection-symmetric if it is invariant to reflection with respect to one
or more straight lines, denoted as reflection-symmetric axes. A 2D
image is said to be order K rotationally symmetric, if it is invariant
under rotation of 2p/K  radians about the center of mass of the
image and K is the largest integer. This image is usually called
rotationally symmetric image with K folds (K-RSI). The orienta-
tions of these K folds are defined in this paper by K fold axes. The
following overview will clarify that none of the existing techniques
could provide a complete solution to the problem in the sense that
no algorithm yet exists for detecting all the reflection-symmetric
axes and rotationally symmetric folds (or fold axes) of a 2D image.

Much of the research literature is concerned with reflection-
symmetry detection. Labonte et al. [11] considered the problem
of detecting global bilateral symmetry. Zielke et al. [12] only
looked at vertical or near-vertical symmetry axes in the image
for car-following. Atallah [8] detected the axis of reflectional sym-
metry by first determining the centroid position and then using
a string pattern matching technique, which considered all
possible lines passing through the centroid. However, this method
is only suitable for planar figures made up of segments, circles,
points, etc. Marloa [6] presented an algorithm for finding the
number and positions of the symmetry axes of a symmetric or
almost-symmetric planar image. This technique required the
evaluation of rational functions and addressed the detection of
rotational symmetry. Sun [28] used orientation histograms for de-
tecting reflection symmetry in gray-level image, but it can only
detect simple bilateral symmetry.

The orientation detection methods, i.e., GPA [18], FPA [19], and
UPA [20], can only determine the rotational symmetries of very
simple objects. Pei and Lin [13] introduced a modified Fourier de-
scriptor to determine the fold number of RSI, based on the obser-
vation that the first nonzero Fourier coefficient is located on the
fundamental frequency. However, this observation is not always
true for certain types of images, i.e., the three images shown in
Fig. 1, their Fourier coefficients at their own fold number are zeros.
Similar assumption was also implicitly suggested and used by
Sun [17]. Lin [14] detected the fold number using a simple mathe-
matical property. However, the detection of fold axes was not to-
tally solved, which makes the technique unable to detect the fold
axes of any of the images shown in Fig. 1.

Masuda et al. [9] described a method of extracting both rota-
tional and reflectional symmetries by performing correlation with
the rotated and reflected images. This method incurs high com-
putational cost and memory requirements, since all possible trans-
formations have to be tried. Sun and Sherrah [10] used the ex-
tended images for 3D symmetry detection. They formulated
the symmetry detection problem as a correlation of the Gaussian
image. However, different processing and representation methods
were needed, respectively, for reflectional and rotational
symmetry detection, which obviously increased computation.
Furthermore, this method is unable to determine whether the in-
put image is symmetric or not.

The above review clearly shows that most of the existing meth-
ods can determine either reflectional symmetry or rotational sym-
metry. Even for those methods which are able to detect both re-
flectional and rotational symmetry, they rely on different proc-
esses. Currently, there is no method which uses an identical set of
features to detect these two forms of symmetries. Furthermore, no
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(a)       (b)            (c)

Fig. 1. Three images whose Fourier coefficients at their corresponding
fold numbers are all zero. Fold number and the first order making Fou-
rier coefficient nonzero are: (a) 2 and 4, (b) 2 and 6, (c) 4 and 8.
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method is guaranteed to detect all the symmetric axes of every 2D
image. In this paper, we have proposed a unified method of using
an identical set of features, i.e., nonzero GC moments, to detect all
reflectional and fold axes of every 2D image. In practice, all the
reflection-symmetric axes and the fold axes of almost every image
can be determined by the first three nonzero GC moments and the
proposed method can be used for the retrieval of complex geomet-
rical shapes such as trademark images [27].

2 PROPERTIES CONCERNING GC MOMENTS
OF SYMMETRIC IMAGES

A set of nonzero GC moments forms the basis of our algo-
rithms for detecting symmetries of every image. We first give the
Fourier expansion of a general image function and the definition
of GC moments, then the properties of GC moments related to
reflection-symmetric images and rotationally symmetric images
are presented, respectively, in Subsections 2.1 and 2.2. Also, the
rules of selecting parameter p in GC moment GCp q,  and control-

ling the process of detecting nonzero GC moments are given in
Subsection 2.3.

The image center can be easily determined using regular
moments as in [21], [22]. Let f x y( , )  represent a centered image.
Its corresponding function in polar coordinate is f (r, q ). The pqth
generalized complex (GC) moment of image function f (r, q )
is defined as

GC R e f r r e rdrdp q p q

j p jqp q
, ,

, ( , )( )= =
�j q

p

p q q
1

2 00

2
,

where p is a nonnegative integer, and q a positive integer. GC
moments have been used previously by the authors to develop
new algorithms for image normalization and orientation detection
[15], [16]. Complex moments in Gabor space were also used to find
symmetries in [23]. The advantage of using GC moments over
complex moments is that the orders p and q are independent in the
definition of GC moments. Meanwhile, by using the selection rules
in Subsection 2.3, different orders p can be selected for different
images, including peculiar images.

Any image function f (r, q ) can be expressed through the Fou-
rier expansion,
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Here, Fourier expansion is used to analyze the properties of GC
moments for symmetric images.

2.1 Reflectional Symmetry
The reflection symmetric axes should pass through the center
of mass of the image. Mathematically, the necessary and suffi-
cient condition for the centered image (f (r, q )) to be reflection-
symmetric is f (r, f + q ) = f (r, f -q ), where f  is an angle from
the x-axis to the symmetric axis. The line passing through the
origin at an angle of f  is the reflection-symmetric axis of the
given image.

The image with the x-axis as its reflection-symmetric axis is
named here the standard reflection-symmetric image. It can be seen
from Theorem 2.1, which is proven in the Appendix, that if all GC
moments are real, then f (r, q ) is a standard reflectional-symmetric
image. This property will be used in Section 3 to derive the tech-
nique for detecting the reflection-symmetric axes of an image.

THEOREM 2.1. The necessary and sufficient condition for f (r, q ) reflec-
tion-symmetric about the x-axis is that all GC moments GCp q,

must be real.

2.2 Rotational Symmetry
For a K-RSI, its function f (r, q ) can be mathematically described by
the following equation.
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Based on this mathematical description, the corresponding Fourier
expansion of a given K-RSI becomes
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An important observation from the Fourier expansion of a K-RSI is

that, the Fourier coefficient fm(r) of K-RSI is zero if order m is not a
multiple of the fold number K.

Since the relationship between the GC moment, GCp q, , and the
Fourier coefficient fm(r) is

GC f r r rdrp q q
p

, ( )=
�

0
,

the property of GC moments for a K-RSI can be given in
Theorem 2.2.

THEOREM 2.2. If the given image function f (r, q ) is a K-RSI, then
its corresponding GC moment GCp q,  is zero for any q which

is not a multiple of K.

2.3 Practical Ramification: Controlling the Process of
Detecting Nonzero GC Moments

The order p  in GCpq  is usually fixed during the process of detect-

ing nonzero GC moments. Thus, in a real application, determining
an appropriate p  is a key step. Also it is very important to deter-
mine whether the remaining nonzero GC moments can be de-
tected. In the following, we give two criteria:

1)� for choosing the appropriate p based on the ratio of the total
alternating energy to the total energy (ap ), and

2)� for controlling the process of detecting nonzero GC mo-
ments by the ratio of the residue energy to the total en-
ergy (bq ).

The detailed explanation can be found in [15].

Function hp(q ) is 1D radial projection of the image function

f (r, q ) on rp ,

h f r r rdrp
p( ) ( , )q q=

�

0
.

(Please refer to [15] for an example of the radial project function

hp(q ) for an image.) The Fourier transform of hp(q ) is
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1
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Then, the ratio
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can be used to determine whether the 1D function hp(q ) has
a strong periodicity. In our study, we select p such that ap  is

over 5 percent.
Besides, the ratio of the residue energy to the total energy is

b
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The threshold used for bq  has been set to 1 percent  in all our

experiments.

3 DETECTION OF REFLECTIONAL SYMMETRY AXES

3.1 Generalized Detection Method
Based on Theorem 2.1, this section will use the phases of nonzero
GC moments to detect all the axes of reflectional symmetries of a
2D image. Assume that the set of the detected nonzero GC mo-
ments is { , , , . . . },GC jp qj

= 1 2 , and the set of the corresponding

phases is { , , , . . . },j p qj
j = 1 2 . If the image is a standard reflectional-

symmetric image, then all nonzero GC moments in the set
{ , , , . . . },GC jp qj

= 1 2  must be real (positive or negative). Thus, the

phase of a nonzero GC moment must be a multiple of p , i.e., kp ,
where k is an integer. If the standard reflectional-symmetric image
f (r, q ) is counterclockwise rotated by an angle of b  and becomes
f (r, q - b ), then the nonzero GC moments of the rotated image
f (r, q - b ) will become

GC e jp q

jq

j

j
, , , , . . . ,¼ =

b
1 2J L

and the phase of

GC ep q

jq

j

j
, ¼

b

is qj b  - kp.
For a given image, we do not know, a priori, whether the input

image is reflection-symmetric or not. And even for a reflection-
symmetric image, we cannot guarantee that the x-axis is exactly its
reflectional axis. For ease of discussion and without lose of gener-
ality, let’s assume the input image is the rotated version, with a
rotation angle b , of the standard reflection-symmetric image. Sup-
pose the phase of the jth detected nonzero GC moment GCp qj, is

j p qj, . The phase j p qj, can be represented as j b ppq jj
q k= - . Ac-

cordingly, the line passing through the origin at an angle of b may
be the reflection-symmetric axis of the current image. Theorem 3.1
given below defines the possible set of reflection-symmetric axes
of the input image, based only on the jth nonzero GC moment.
There might exist no reflection-symmetric axis at all for the input
image, however, if such axes exist, it is guaranteed to be included
in the set of the axes which is defined in Theorem 3.1.

It is easy to note from Theorem 3.1 that the actual reflection-
symmetric axes must be contained in any set of axes which is de-
fined by any nonzero GC moment of the input image. Theorem 3.2
gives the method of calculating all the reflection-symmetric axes
by using all the nonzero GC moments.

THEOREM 3.1. The reflection-symmetric axes of the input image f (r, q )
are included in the set of axes

AxesSet

k

q k q

q
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j
j

j

j

=
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= -
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)K
*K

axis with angle b b
j p

, , , . . . , ( )0 1 1 ,

where j pqj
 is the phase of the jth nonzero GC moment of the input

image f (r, q ).

THEOREM 3.2 All the reflection-symmetric axes of the input image
f (r, q ) are included in the axes set AxesSet , defined by

AxesSet

AxesSet AxesSet AxesSet AxesSetq q q qj

=
¬ ¬ ¬ ¬ ¬

1 2 3
. . . . . .  .

All the axes in AxesSet  are potentially the reflection-symmetric
axes of the input image f (r, q ).

3.2 A Practical Reflection-Symmetry Detector (PRSD)
In practice, it is impossible for us to first calculate all the nonzero
GC moments and then use them to detect the reflection-symmetric
axes. Similarly, when computingA B¬ , we should check whether
both line a in set A and line b in set B have similar orientations.
PRSD is summarized as follows.

PRSD: For real applications, all the reflection-symmetric axes of
almost every image f (r, q ) can be determined by the first three
nonzero moments,

AxesSet AxesSet AxesSet AxesSetq q q= ¬ ¬
1 2 3

.

Notice that, only the likelihood of these elements is required when
comparing elements from different sets.

We will show below that the first three nonzero GC moments
are sufficient to detect all the reflection-symmetric axes of every
image in our image database, which contains more than 200 im-
ages. We show that for most images, all the reflection-symmetric
axes are exactly the axes in the first axes set (case 1). While for
some images, only some of the axes in the first axes set are exactly
the reflection-symmetric axes (case 2). For the images that are not
reflection-symmetric, no axis in the first axes set was found to be a
reflection-symmetric axis of the image (case 3).

Case 1: All axes in the first axes are reflection-symmetric axes

For the image given in Fig. 2a1-Fig. 2a4, its first three nonzero GC
moments are GC0 1, , GC0 2, , and GC0 3, . The phase of the first

nonzero GC moment GC0 1,  can determine the first axes set

AxesSet1
, which contains only one axis, shown as a thick gray line

in Fig. 2a1. Similarly, the second nonzero GC moment GC0 2,  can

determine two axes in the second axes set AxesSet2 , shown as
two thin black axes in Fig. 2a2. Notice that the thick gray axis is
overlapping with one of these two thin black axes. Finally, the
thick gray line is also overlapping with one of the three
axes, which are defined by GC0 3,  and shown as thin black

lines in Fig. 2a3. The detected reflection-symmetric axis is shown
in Fig. 2a4 by a black line. Similar process is also shown in
Fig. 2b, where the image has GC0 2, , GC0 4, , and GC0 6,  as its first

three nonzero GC moments.

Case 2: Partial axes in the first axes are reflection-symmetric axes

The image shown in Fig. 3a has the first three nonzero GC mo-
ments, GC0 2, , GC0 3, , and GC0 4, . The first axes set AxesSet2  has two

axes, shown as two thick gray lines in Fig. 3a1. The second and
the third axes sets, AxesSet3  and AxesSet4 , respectively, have three
and four axes, which are shown as thin black lines in Fig. 3a2 and
Fig. 3a3. Notice, only the horizontal axis in Fig. 3a1 has its corre-
sponding one in both Fig. 3a2 and Fig. 3a3. That leads to the cor-
rect reflection-symmetric axis shown in Fig. 3a4. Fig. 3b shows the
intersection process of the image with the first three nonzero GC
moments GC0 4, , GC0 6, , and GC0 8, .
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Case 3: None of axes in the first axes are reflection-symmetric axes

The first three nonzero GC moments of the image in Fig. 4a are
GC6 1, , GC6 3, , and GC6 4, . From Fig. 4a1-Fig. 4a3, none of the axes in

the second and the third axes sets, AxesSet3  and AxesSet4 , are
similar to that of the thick gray line in Fig. 4a1. The result of sym-
metry detection is that no reflection-symmetric axis exists, that is,
the image is not reflection-symmetric. Fig. 4b is another example
with the first three nonzero GC moments, GC0 2, , GC0 4, , and GC0 6, .

This image is rotationally symmetric, but not reflection-symmetric.

4 ROTATIONAL SYMMETRY DETECTION

As in the last section, this section will use the same three non-
zero GC moments for detecting both the fold number and fold
axes of the image.

4.1 Detecting Fold Number
Theorem 2.2 implies that the order qj  in the detected nonzero

moment GCp qj,  of a K-RSI should be a multiple of fold number

K. Along this line, Theorem 4.1 is inferred for detecting the fold

number K of the input image. In practice, the first three non-
zero GC moments are enough to detect the fold number of al-
most every image. That is described in PFND (A Practical Fold
Number Detector).

THEOREM 4.1. Let the detected nonzero GC moments of the given image
f (r, q ) be

{ , , , , . . . },GC jp qj
= 1 2 3 .

Then the fold number of the image f (r, q ) is the biggest common

factor of the orders in set q jj , , , , . . .= 1 2 3> C.
PFND: The fold number of almost every image f (r, q ) is the biggest
common factor of orders in the set q q q1 2 3, ,< A, where q1, q2 , and

q3  are the first three orders making GC moments nonzero,

{ , , }GC GC GCpq pq pq1 2 3
.

The first three nonzero moments of the image given in Fig. 2a
are GC0 1, , GC0 2, , and GC0 3, . The biggest common factor of these

three numbers {1, 2, 3} is 1, which correctly indicates that this

Fig. 2. Two examples of images, whose reflection-symmetric axes are exactly the axes in the first axes set.

Fig. 3. Two examples showing that only some of the axes in the first axes set AxesSetq1
 are the actual reflection-symmetric axes.
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image is a 1-RSI. For another image in Fig. 2b, its first three
nonzero GC moments are GC0 2, , GC0 4, , and GC0 6, . The biggest

common factor of these three numbers {2, 4, 6} is 2. Thus, the
image is a 2-RSI. The other four images in Fig. 3 and Fig. 4 also
demonstrate the correctness of PFND.

4.2 Detecting Fold Axes
In rotational symmetry detection, besides detecting the fold
number of the input image, detecting its fold axes is also a key
problem. Theorem 4.2 gives the method of detecting these fold
axes. This theorem also guarantees that the proposed method
can define all the fold axes exactly if J is infinite. Theorem 4.2 indi-
cates that, if the number

N x qj j
j

J

=
=
Ê

1

is equal to the biggest common factor of all numbers in set

q j Jj| , , , . . .= 1 2 3> C ,

then the number of half lines, used here to represent the fold axes
of image, is equal to the fold number of the image. That is exactly
what we need. Theorem 4.3 gives the method for calculating the
appropriate integer weights

x j Jj| , , , . . .= 1 2 3> C.

Theorems 4.2 and 4.3 are extended from our work in [15]. Again in
practice, the first two nonzero GC moments are sufficient for de-
tecting the fold axes. This way, we select J = 2 in our experiments.

THEOREM 4.2. The phase of the combined moment

( )GCpq
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Ê
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,

where GCpqj
 ( j = 1, 2, 3, … J) are the detected nonzero GC mo-

ments of the input image f (r, q ). J is an integer, and can also be
defined infinite. xj  is an integer weight. Then there exist

N x qj j
j

J

=
=
Ê

1

fold axes starting from the origin O and having directional
angles
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THEOREM 4.3. There exist appropriate integer weights

x j Jj| , , , . . .= 1 2 3> C
making

x qj j
j

J

=
Ê

1

equal to the biggest common factor of all orders in

q j Jj| , , , . . .= 1 2 3> C .

The appropriate weights

x j Jj| , , , . . .= 1 2 3> C
can be obtained by solving the following linear programming

problem and selecting the smaller xj  in the solution set. The ob-

jective function is

x j J
j j

j

J

j

x q
| , , ,...
min
= =

Ê
1 2 3 1J L

,

and the constraint conditions are

x qj j
j

J

=
Ê �

1

1

and

x qj j J j<
=
max ( )

, ,..,1 2
.

Fig. 4. Two examples showing that no axes in the first axes set AxesSetq1
 are the actual reflection-symmetric axes. These images are not

reflection-symmetric.
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After applying the fold number detection algorithm on a set
of images, only the images with a fold number bigger than one
needs to be processed further for fold axes detection. Images in
Fig. 2b, Fig. 3b, and Fig. 4b are now reused as the test images
(Fig. 5). If only the first nonzero GC moment GCp q, 1

 were used to

detect the fold axes, we can obtain the fold axes shown as gray
arrows in Fig. 5a1, Fig. 5b1, and Fig. 5c1. Notice, the fold axes of
Fig. 5a1 and Fig. 5c1 were correctly detected, while the fold axes of
Fig. 5b1 were wrongly detected. But using the combined moment
of the first two nonzero moments, all the fold axes can be correctly
detected (see Fig. 5a2, Fig. 5b2, and Fig. 5c2).

5 EXPERIMENTAL RESULTS AND DISCUSSION

A relationship between the number of the reflection-symmetric
axes and the number of the fold axes can be derived, based on the
notations in [24], [25], for verifying the results of symmetry detec-
tion. The relationship is that, for K-RSI(K � 1), the number of the
reflection-symmetric axes is either zero or K. From this relationship,
we can infer that, if the detected number of the reflection-
symmetric axes is bigger than 1, then the image must be rotation-
ally symmetric and its fold number is exactly equal to the detected
number of reflection-symmetric axes.

Since the four images in Fig. 2-Fig. 3 are all reflection-
symmetric, their numbers of reflection-symmetric axes are equal to
the fold numbers. For examples, the image in Fig. 2a has one re-
flection-symmetric axis and its fold number is also one. For the
other two images in Fig. 4, their numbers of reflection-symmetric
axes are both zeros.

5.1 A Complete Algorithm for Detecting Reflectional and
Rotational Symmetries (The Shen-Ip Symmetries
Detector)

Since reflectional symmetry detection and rotational symmetry
detection use the same three nonzero GC moments, the method of

detecting symmetries of an image can thus be integrated into a
single and efficient algorithm. The Shen-Ip Symmetries Detector can
be described as follows:

1)� Make the input image centered, based on its regular moments.
2)� Choose an appropriate p to make the selected 1D function

hp(q) having strong alternating energy (ap > 5 percent ).

3)� Detect first three nonzero GC moments

{ , , }, , ,GC GC GCp q p q p q1 2 3
,

if bq � 1 percent  and q � 30  in the process of detecting

nonzero GC moments. (The number of nonzero GC mo-
ments may be less than three.)

4) Determine reflection-symmetric axes of the image using the
phases and orders of the first three GC moments detected,

{ , , }, , ,GC GC GCp q p q p q1 2 3
 (PRSD).

5) Determine the fold number by calculating the biggest com-
mon factor of q q q1 2 3, ,< A(PFND).

If the detected fold number is equal to one, no fold axis exists.
Otherwise, use the combined moment of the first two nonzero
moments to determine the fold axes of the image. (Theorem 4.2,
where J = 2.)

5.2 Experiments on Exactly Symmetric Images
To clearly demonstrate the ability of our method, our experimental
results are classified into three classes:

�� Class 1 consists of images whose reflection-symmetric axes
are exactly the axes in the first axes set, defined by the first
nonzero GC moment.

�� Class 2 consists of images, where only some axes in the first
axes set are exact ones.

�� Class 3 consists of images without any reflection-symmetric
axes.

Classifying experiments into three classes do not mean that we
need to use different methods for symmetry detection of differ-
ent images. In fact, we use the same algorithm described above
for all the image classes. Additionally, notice that the established
relationship between reflectional symmetry and rotational sym-
metry holds for all the test images in the experiments. The ex-
perimental results show that both reflectional symmetry and
rotational symmetry of every image in our image database can
be detected by our method. There are more than 200 images in
the image database.

Class 1: All axes in the first axes set are exactly the reflection-
symmetric axes

Some of the images belonging to this class are shown in Fig. 6. The
first three nonzero GC moments of every image in Fig. 6 are given
in Table 1. Star “*” in the elements of Table 1 means that, under the
conditions of the alternating energy limitation and q � 30 , the
current nonzero GC moment cannot be detected. For the image
with only two nonzero GC moments detected, the process of de-
tecting symmetries is then based on them only. Normally, the pro-
cess of detecting symmetries of every image is based on the first
three nonzero GC moments. Notice that in Fig. 6, every fold axis
overlaps with one of the reflection-symmetric axes.

Class 2: Only some of the axes in the first axes set are exactly the
reflection-symmetric axes

Fig. 7 shows images, whose actual reflection-symmetric number is
less than the order of the first nonzero GC moment. The first
three nonzero GC moments, the detected number of reflection-
symmetric axes and the fold number of every image in Fig. 7 are
shown in Table 2. For example, the first three nonzero GC mo-

Fig. 5. Compare the fold axes, respectively, defined by the first one
nonzero GC moment (a1, b1, c1) and the first two nonzero GC mo-
ments (a2, b2, c2).
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ments for Fig. 7a are GC0 10, , GC0 11, , and GC0 13, . If using only the

first nonzero GC moment GC0 10, , 10 axes in the first axes set were

defined by this moment. However, only one axis in the first axes
set is the correct reflection-symmetric axis, others are incorrect.
After using all three moments {GC0 10, , GC0 11, , GC0 13, }, we found

the exact reflection-symmetric axis of this image, which is shown
as a black line in Fig. 7a. Since the biggest common factor of the
three orders {10, 11, 13} is 1, which indicates fold number 1 and
thus no fold axis existing. For the other image in Fig. 7g, its first
three nonzero GC moments are GC0 6, , GC0 8, , and GC0 12, . The big-

gest common factor of the three orders {6, 8, 12} is 2, which indi-
cates this image is a 2-RSI. If only the first nonzero GC moment
GC0 6,  is used, then reflection-symmetric axes, fold number and

fold axes cannot be correctly determined. The two fold axes, de-
tected by the first two nonzero GC moments, are shown as two
arrows in Fig. 7g.

Class 3: None of the axes in the first axes set are reflection-
symmetric axes

Fig. 8 shows eight images, none of them are reflection-symmetric.
Fig. 8a to Fig. 8g illustrate that, the images may be rotationally
symmetric, but may be not reflection-symmetric. For example,
from Table 3, the first three nonzero GC moments of Fig. 8g are
GC0 3, , GC0 6, , and GC0 9, , respectively. Its fold number and fold axes

were correctly detected, which are shown in Fig. 8g as three ar-
rows. However, the intersection set of the first three axes sets is nil.
That means, no reflection-symmetric axis exists for the image.

5.3 Experiments With Almost-Symmetric Images
Since GC moments extract global features of the image, the pro-
posed GC moments-based method is also able to detect the sym-

metric axes of almost-symmetric images. Table 4 gives the first
three nonzero GC moments of every image in Fig. 9. Fig. 9 shows
eight almost-symmetric images, and the detected reflection-
symmetric axes and fold axes.

5.4 Discussion
In the experiments above, all the test images are actually gray scale
images, however they appear to be binary since their gray-level
values are close to either black or white. In fact, the proposed tech-
niques are suitable to detecting symmetries for gray scale images.
To further illustrates this point, Fig. 10 shows two examples.

Weighting factor (rp ) in the GC moment definition is very im-
portant, which makes us select special orders p for special images.
For example, p = 8 was used for Fig. 7b, p = 1  and p = 3  were
used for Fig. 8c and Fig. 8d, respectively, and p = 3  and p = 1
were used for Fig. 9f and Fig. 9h, respectively.

Since GC moments are not invariant to affine transform, we
first make the affine-transformed object compact by using the
Compact Algorithm in [15], before applying GC moments to detect
its symmetries. Additionally, there exist methods for detecting
affine symmetries based on affine-invariant features defined on the
contour of the object [26].

Theoretically, our technique is applicable to object with
higher degree of symmetries. However, it depends on the
resolutions of the image due to the use of global features. For
our case, the image size is 128 � 128 and we can detect the de-
gree of symmetries up to K = 20. For our technique, the com-
putation cost is mainly in the calculation of GC moments. No
other computation is required besides logical checking. Also,
the speed of our technique depends on the images themselves.
Simple image needs less time compared with more complex

Fig. 6. Experimental results on the images in class 1. In every subfigure, thin lines represent the detected reflection-symmetric axes, while thick
arrows denote the detected fold axes.

TABLE 1
THE FIRST THREE DETECTED NONZERO GC MOMENTS, THE DETECTED NUMBER OF REFLECTION-SYMMETRIC AXES,

AND THE DETECTED FOLD NUMBER FOR EVERY IMAGE OF CLASS 1 AS SHOWN IN FIG. 6
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images. The computation time for calculating one GC moment
using a Pentium 233 PC is 0.05 sec.

The robustness of our algorithm against random noises and
errors is dependent on the robustness of computing the GC
moments in the presence of noises. We have studied the robust-
ness of GC moments computation in the presence of Gaussian
noise [15] and shown that GC moments, as global features, are
relatively robust to noises. As to uneven lighting effects, i.e., a
symmetric object with one side darker than the other side, our
technique can endure only a small amonut of nonuniform illumi-
nations due to the use of global features. We have applied our al-
gorithm to the almost-symmetric images, i.e., inexact images, in
Subsection 5.3. These examples show that our algorithm can also
detect inexact symmetry.

6 CONCLUSION

In this paper, we have presented a unified method for detecting
symmetries of every image. Unlike previous approaches that re-
quire different methods to detect different types of symmetries,
here we combine the detection of both reflectional-symmetry and
rotational-symmetry into a single process by using the same set
of GC moment features derived from the image. In practice, once
the three nonzero GC moments have been calculated, the sym-
metry axes for reflectional and rotational symmetries can be effi-
ciently determined. We have applied the techniques to over 200
images in our image database. Experimental results show that
the proposed method can detect both reflectional symmetry and
rotational symmetry of every image. Since GC moments extract
global features of the image, our GC moments-based method
also has the ability to detect symmetries of almost-symmetric im-

age, even though the image is not exactly symmetric. Further-
more, the derived relationship between reflectional symmetry and
rotational symmetry can be used to check the correctness of sym-
metry detection.

As a conclusion, the main contributions of this paper can be
summarized as follows:

1)� The reflection-symmetric axes are actually the intersection of
all axes sets defined by all the nonzero GC moments.

2)� The fold number can be determined by calculating the big-
gest common factor of all orders making GC moments
nonzero.

3)� The fold axes can be defined by both the phase and the or-
der of the combined moment, which is generated from all
the nonzero GC moments.

4)� The relationship between reflectional symmetry and rota-
tional symmetry has been derived.

5)� Since GC moments extract global features of the image, the
proposed method is able to detect the symmetries of almost-
symmetric image.

APPENDIX

The necessary and sufficient condition for f(r, q) reflection-
symmetric about the x-axis is that all GC moments GCp q,  are real.

PROOF.
Necessary: Since x-axis is the reflection-symmetric axis of
f (r, q ), we have f (r, q ) = f (r, -q ). This way, we can rearrange

fm(r) as follows:

f r f r e dm
jm( ) ( , )=

1
2 0

2

p q qqp

Fig. 7. Experimental results on the images in class 2, where only some of the axes in the first axes set are exactly the reflection-symmetric axes.

TABLE 2
THE FIRST THREE DETECTED NONZERO GC MOMENTS, THE DETECTED NUMBER OF REFLECTION-SYMMETRIC AXES,

AND THE DETECTED FOLD NUMBER FOR EVERY IMAGE OF CLASS 1 AS SHOWN IN FIG. 7
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= +
1

2
1

20

2

p q q p q qqp q

p

p
f r e d f r e djm jm( , ) ( , )

= +-

-

1
2

0

p q qq q

p
f r e e djm jm( , )( )

= ¼
-

1
2 2

0

p q q q
p

f r m d( , ) cos( )  .

The above expansion shows that fm(r) is real. Additionally,
the relationship between GC moment GCp q,  and the Fourier

coefficient fm(r) is

GC f r r rdrp q q
p

, ( )=
�

0
,

which can be obtained by using the definition of GC
moments and the Fourier expansion of image function.

Accordingly, all GC moments GCp q,  are real because fq(r)

is real.

Sufficient: We can rewrite fq(r) as

Fig. 8. Experimental results on the images in class 3, where no refection-symmetric axis exists.

TABLE 3
THE FIRST THREE DETECTED NONZERO GC MOMENTS, THE DETECTED NUMBER OF REFLECTION-SYMMETRIC AXES,

AND THE DETECTED FOLD NUMBER FOR EVERY IMAGE OF CLASS 1 AS SHOWN IN FIG. 8

Fig. 9. Symmetry detection on almost-symmetric images.
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f r f r j f rq q q( ) Re ( ) Im ( )= +4 9 4 9,
where

Re ( ) ( , ) cos( )f r f r q dq4 9 = 1
2 0

2

p q q q
p

,

and

Im ( ) ( , ) sin( )f r f r q dq4 9 = 1
2 0

2

p q q q
p

.

Since all GC moments are real, then the imaginary parts
are zero.

Im( ) Im ( ),GC f r r rdrp q q
p= =

� 4 9
0

0 .

The above equation means that all the mapping factors of

the function Im(fq(r)) on rp+1  are zeros. To satisfy this re-

quirement, the function Im(fq(r)) must be zero. That is, fq(r) is
real, which leads to

f r f r e f r mm
jm

m
m

m

( , ) ( ) ( ) cos( )q qq= =-

=-�

�

=-�

�

Ê Ê
and f (r, q ) = f (r, -q ). Therefore, given that all GC mo-
ments are real, then the image is reflection-symmetric
about the x-axis. o
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Direct Least Square Fitting of Ellipses

Andrew Fitzgibbon, Maurizio Pilu, and Robert B. Fisher

Abstract—This work presents a new efficient method for fitting ellipses
to scattered data. Previous algorithms either fitted general conics or
were computationally expensive. By minimizing the algebraic distance
subject to the constraint 4ac - b2 = 1, the new method incorporates the
ellipticity constraint into the normalization factor. The proposed method
combines several advantages: It is ellipse-specific, so that even bad
data will always return an ellipse. It can be solved naturally by a
generalized eigensystem. It is extremely robust, efficient, and easy to
implement.

Index Terms—Algebraic models, ellipse fitting, least squares fitting,
constrained minimization, generalized eigenvalue problem.

————————   F   ————————

1 INTRODUCTION

THE fitting of primitive models to image data is a basic task in
pattern recognition and computer vision, allowing reduction and
simplification of the data to the benefit of higher level processing
stages. One of the most commonly used models is the ellipse
which, being the perspective projection of the circle, is of great
importance for many industrial applications. Despite its impor-
tance, however, there has been until now no computationally effi-
cient ellipse-specific fitting algorithm [14], [5].

In this paper, we introduce a new method for fitting ellipses,
rather than general conics, to segmented data. As we shall see
in the next section, current methods are either computationally
expensive iterative approaches, or perform ellipse fitting by
least-squares fitting to a general conic and rejecting non-
elliptical fits. These latter methods are cheap and perform well
if the data belong to a precisely elliptical arc with little occlu-
sion but suffer from the major shortcoming that under less
ideal conditions—nonstrictly elliptical data, moderate occlu-
sion or noise—they often yield unbounded fits to hyperbolae.
In a situation where ellipses are specifically desired, such fits
must be rejected as useless. A number of iterative refinement
procedures [16], [8], [12] alleviate this problem, but do not
eliminate it. In addition, these techniques often increase the
computational burden unacceptably.

This paper introduces a new fitting method that combines the
following advantages:

1)� ellipse-specificity, providing useful results under all noise
and occlusion conditions;

2)� invariance to affine transformation of the data;
3)� high robustness to noise; and
4)� high computational efficiency.

After a description of relevant previous ellipse fitting methods,
in Section 3 we describe the method and provide a theoretical
analysis of the uniqueness of the elliptical solution. Section 4 con-
tains experimental results, notably to highlight behavior with
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