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Abstract—The optimal predictors of a lifting scheme in the inherent property of producing floating point output, classical
general n-dimensional case are obtained and applied for the filter banks can not in general be used in lossless compression
lossless compression of still images using first quincunx sampling schemes, since the coding cost for the coding of the floating

and then simple row—column sampling. In each case, the efficiency _ . . L
of the linear predictors is enhanced nonlinearly. Directional point wavelet coefficients would be prohibitively large. Instead,

postprocessing is used in the quincunx case, and adaptive-lengthinterpolative pyramids may be used [7]-{9].

postprocessing in the row—column case. Both methods are seen The lifting scheme has recently attracted much interest. Itis a
to perform well. The resulting nonlinear interpolation schemes \way to implement critically sampled filter banks which have in-
achieve extremely efficient image decorrelation. We further teger output. The fundamentals of lifting can be found in [10].

investigate context modeling and adaptive arithmetic coding of An algorithm for d . let t f into lifti
wavelet coefficients in a lossless compression framework. Special n aigorithm for decomposing wavelet transtorms Into iting

attention is given to the modeling contexts and the adaptation of Steps was described in [11]. A complete presentation and eval-
the arithmetic coder to the actual data. Experimental evaluation uation of the lifting scheme for the separable case was given in

shows that the best of the resulting coders produces better results [12]. Extension to the general multidimensional case was pre-
}rr:%n eOtChci:ink”OW” algorithms for multiresolution-based lossless ganted in [13]. Finally, nonlinear wavelet transforms were re-
9 g cently investigated in [14]-[16].
Index Terms—Arithmetic codes, image coding, wavelet trans-  Following decorrelation of the input image by methods such
forms. as the lifting transform, the second step in the coder construc-
tion is the design of efficient entropy coding methods for the
|. INTRODUCTION resulting coefficients. Efficient arithmetic coding [17] of the
avelet representation of images has attracted significant in-

AVELET decomposition has established itself as one virest. Recently, new coders have been proposed for lossy [18],

the state of the art tgchmques fqr image codlng.pro 19] and lossless [20] compression which employ context mod-
lems because of its capability for allowing the generation éing for the entropy coding of wavelet coefficients.

lossy versions of an original image at multiple resolutions an In this paper we first calculate the optimal predictors, in the

bitrates. Many applications such as the transmission of de;itérhse of minimizing the prediction error variance of a wide-

maps for the construction of 3-D views of a scene [2] or the € ense stationary signal, of a lifting scheme in the genexit

ficient storage and communications of medical images requ nsional case. Then, we apply these optimal predictor filters
lOSSIeS‘Qf c_odmg [31, [4]'.M05t known lossless coders are b"_’ls(ﬁ h corresponding update filters for the lossless compression
on predictive decorrelation [5], [6] and do not have any PIEVIERE ot images using first quincunx sampling and then simple

capahility. In this paper, we prapose lossless coders baSGdrﬁ’vr\]/—cqumn sampling. In each case, and in order to improve

yvavelet tre_msform that perform within a few percentage poi e results wherever the wide-sense stationarity assumption is
in comparison to state-of-the-art context-based coders (wh o

d th . bility. | e t N alid, the efficiency of the linear predictors is enhanced by
O:O a\llet[t)revu:W capabl Il'y, '('je" pro%.rlfssll;/e Iiansr:mfwsml onlinear means, namely by directional postprocessing in the
th wavelel frans (i'rm IS ieaf|ze using Ik?br "’Ijn S[‘)N 'Ct Stﬂl uincunx case, and by adaptive-length postprocessing in the
€ Image information info frequency subbands. LUe 10 el column case. Both methods are seen to perform well. In the
latter case, in particular, the resulting filter bank in effect adapts
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decomposition are derived whose performance is enhanced by e shall assume that the input to the filter bank is a wide-
nonlinear, direction-sensitive implementation described in Sesense stationary process with autocorrelation fundif and
tion 1V. In Section V the optimal prediction filters for sepapower spectral densit$(c’v)
rable lattices are determined and synthesis filters are derived for ) .
the optimal production of intermediate images in progressivéi[s] = E{z[m+s]z[m]}, ®(c¢’¥)=>_ R[sle™ ¥ (2)
coding. A class of separable adaptive lifting transforms which s
enhances the performance of the filters in Section V, is presen{glere the summation sign indicates a multiple sum ane
in Section VI. An entropy coder for the coding of the resultingsl’ v 8] w = [wy, e, wp] T
wavelet coefficients of Sections IV and VI, is described in Sec- The output of the prediction filters will ba/ distinct wide-
tion VII. Section VIII contains experimental results and finallysense stationary subsequences [22]
conclusions are drawn in Section IX.

#;[Mm] = #Mm +r;] = > p;[Mk]z[M(m - k)] (3)

k

wherep;[-] is the impulse response of tlin predictor.
The coefficientg;[-] will minimize the corresponding mean-

A wavelet transform in its simplest form is obtained by fjj.Square error variance

tering an image with a filter bank such as that described in Figez) _ E{GQ[Merri]} = B{(Z[Mm+r] _x[Merri])Q}
composed of analysis filters; followed by subsampling by 4)
sampling matrixV, upsampling, and synthesis filtey. Exact it the following relation holds (“orthogonality principle” [23]):
recovery of the initial image is possible if proper relationships
hold between the filters andg [21].

In wavelet-based image representation the initial image is Eqlel
decomposed into a coarse image and a high pass image con-
taining the detail information. By iterating the procedure de- 2[M(m — t)]} —0
scribed above to the lowpass channel, a logarithmically split
filter-bank is formed consisting of wavelet coefficients at dif-
ferent scales and a lowpass image of very small dimensions.Thus

The decorrelation efficiency of such a filter bank is greatly
affected by the multiplicitiesVy, of the zeroes at of h(¢/*).
Thus, some of the main goals in the design of wavelet coders are
maintenance of the perfect reconstruction property and propgiiltiplying both sides byzjtTMTw and summing with respect
selection of/V,.. A very efficient way to accomplish this is theto t yields
implementation of the filter bank using the “lifting scheme.” In
its most general form [10] this consists of splitting the image in >~ R[Mt + ri]e’t ™MW = p, (ejMTW) i) (ejMTW) 7
separate components, estimating components from others and
subsequently adding to components filtered versions of othggq o
components. The step associated with estimating the intensity
of a coefficient is usually termepredictionwhereas the step ) (GJMTW) =3 R(Mm)e/m M'w ®)
associated with smoothing the coefficients on which the initial m
prediction is based using the prediction errors is calipdate
If applied for lossless coding, the output of the predictor antP

Il. LIFTING USING OPTIMAL PREDICTION FILTERS

Mm +r;] — Zpi [Mk]z[M(m — k)])
K

®)

R[Mt +r;] = > pi[MK]R[M(t — k)]. (6)

expressb in terms of® note the identity [24], [25]

update filters must be rounded before the addition to the cor- ] M-l
responding components. For a first analysis, however, we shall k] = = Z eIk M g
ignore the effects of rounding. i=0
A specific form of a filter bank coder based on a lifting _ {1, if k = Mk; k; :integer )
scheme was proposed in [13] and is depicted in Fig. 1. 10, otherwise

In this, if M is the sampling matrix}/ = detM is the )

number of its polyphase components, andts coset vectors, Whereq; are the closet vectors d¥1* and M~ is a short
i=0,---, M —1. P, denote the prediction arid, the update Notation for(M*)~*. Thus

filters k = 0, ---, M — 1. The signalsz; on each branch of

ES iMT w o ik w
the filter bank are the polyphase components of the imput ® (@J ) = Z clk] R[k]e’
k
1 M—-1 o r
:M Z R[k]egk (w—27M""q;)
1=0
T 1 M-1
Lk [Mm] :.’L'[Mm + rk]a m = [mla T mn] ) - = ) (ej(w727rM7Tqi)) ) (10)

kE=0,---, M —1. (1) M e~
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Fig. 1. M-channel lifting scheme (for simplicity, the rounding operators are not shown).
H _@_ _@_ G the above is always, as expected, an interpolating filter, i.e., itis
0 0 of the form
M M
) M-1 . o
PE@¥)y=1+ J VPR, (GJM W) .
W - D =14 3 O
M M ) . . .
We summarize the above results in a concluding theorem.
Theorem 1: An arbitrary lifting scheme shown in Fig. 1 is
optimized, in the sense of minimizing the prediction error vari-

ances (4) foreach i = 1, ---, M — 1, if the corresponding
Hyi 4®_ @_ SYEN predictor transfer functionBi(ejMTW) are the polyphase com-
M M ponents of the functio® (/%) found by (12).

We will now derive the expression linking the lowpass filter
of a conventional filter bank with the predict and the update fil-
T ters of a lifting-based implementation. The filter bank in Fig. 2
Finally, on multiplying both sides of (7) by ™ and summing s equivalent to the filter bank of Fig. 1. Lef;, and G, de-

Fig. 2. Equivalent filter bank.

overz, we obtain note the transfer functions of the lowpass and highpass filters of
M—1 the equivalent filter bank depicted in Fig. 2. Consider a signal
D) = p(GJW)i Yo (ej(wf%M*Tqi)) z[m)] as input to the filter bank in Fig. 2. Its Fourier transform
M o in polyphase expansion is given by
where . Ml
X (WY = —jwir; xri JM*w . 13
v ] =3 (™). a3
P(ei™) = WP (MW 11
() Z ( ) (1) Let the transfer function of théth filter be

=0
M-1

from which the optimal predictors are immediately obtained Hy(e™) = Z W Hi (ejMTw) k=0 M1
M—-1 : =0
h h h P(ei™)
P(e/™) = Jriw p (MW = o o
(™) ; ¢ (e ) (i) whereX*(e/™M" W) andH} (¢/M" ™) denote the polyphase com-
B(cI) ponents of the signal and thigh analysis filter, respectively,
=— . (12) defined as above. Then the signal in the lowpass channel of the
1 w27 M-Tqs filter bank in Fig. 2 after filtering and downsampling is
M Z [0} (CJ( 27w VI qu)) g g phng
=0 —

- iMT w i iMTwY\ yi [ iMTw
It is seen therefore, that a single transfer function given by o (GJ ) - Z Ho (GJ )‘X (CJ )
(12) may be used to describe the predictors minimizing each and =0
every error variance in (4). Since the denominator of (12) iswhere H*(-) and X*(-) are respectively théh polyphase com-
trivially seen to equal théth polyphase component éf(c’*), ponents of (-) and X (-). However from (1), théth polyphase

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 02:05 from IEEE Xplore. Restrictions apply.



4 IEEE TRANSACTION ON IMAGE PROCESSING, VOL. 10, NO. 1, JANUARY 2001

component ofX is equal to the signal in thih branch of the wherez, = ¢/, k = 1, 2. Application of (12) yields
: - : i(oiMTwY — Y. (M w - -
filter bank in Fig. 1, i.e. X*(¢? ) = X, (& ) and hence aolzr + 27Y) + Polzz + 23Y)

P(Zl, 22) =1+

. ML . 14+ yo(z1ze + 2 tzs ¥ 2125t + 20 P2y h)
X/O (GJMTW) — Z Hé (GJMTW) Xz (GJMTW) ) (14) 1 2 1 2(20)
- . here
Trivially, however from Fig. 1, we also have W A Ay
: : YO = 7 oN 1 vy [3 = T yoN/1 1 22w
g (M) =X, (M) P DA+ P AN+ A
et - SR - B (21)
+ Z X/i (GJM w) []z (CJM w) (1+)\1)(1+)\2)

i=1 This filtering operation may be implemented by spectral fac-

torization, following the methods in [28] and the IIR implemen-
. . . . tation methods in [29]. Alternately, a FIR approximation to (20)
! JMTw ) . JM* w 3 JM* w JMw H . H
X' (e ) =X; (e ) + P (e )Xo (e ) may be obtained with the expansion
1
L+v0(z + 21 (22 +251)

where

therefore
X'g (ejMTW)

=Xy (chTW) [1 - Z Py (chTW) Uy, (chTW) i=0 =0
=1 = By,0+ Bi,1(z122 + 27 tzo + 225t + 2720 )
4 Ail X, (ejMTw) . (GJMTW) (15) + By o(#f + 27 423 +27)
Lo ' ' + Ba,o(2i2) + 2 2ay 2iey 2 2y )

3 -1.3 -3
From the equivalence of (14) and (15) we conclude that + 31,9,1(2152 + 51 2 +§122 - s
Mt TN - R R L R N T

HY (™M) =1 3 B (™M) U (™) + Buo(stHat b )+
k=1 where

Hi (ejMTW) —U, (GJMTw). B0 i L <2z>< 21 ) F—0.12,-..
=k

Thus, from (13) A

M-1 i 21 2l
Hole™) =1= Y P (M) Uy (5M7) pa=3 (7))

k=1 =1
M-1 00
. . 204+ 1\ /21 +1
]P?W ( ]MTw) B —_ _ 2041 )
+ Eﬁl e U, le . (16) 1,3 1221 Yo I I—1

This expression will be used in the sequel to determine the Jpasily: (20) is seen to be approximated by
date filter so that the resulting lowpass image is smooth and thup(zl’ 72) =1+ (aoBo,0 + 2a0B1,1 + aoB2,0) (21 + 751_1)

filtjr;trible for parsimonious coding in the next step of the algo- + (BoBo,o + 2B0B1.1 + BoBa. o) (22 + 251)
The specific case of a quincunx sampling matrix will be con- +(a0B1,1 + aoBy,s + foBz,0 + FoBz,2)
sidered next. (AR + 2P + 22y 202

+ (aoB2,0 + aoB2,2 + BoD1,1 + PobBi,3)
(mz ozt g )
If the quincunx (see Fig. 5) sampling matrix is used + ao(Ba,0 4+ 2By 3 + By o) (23 +27%)
M {1 1} an + Bo(B2,0+2B1,5 + Ba,o)(# + 5% (22)
1 -1 For example, if only the above terms are retainedy,if=

and the separable spectral density model [26], [27] is adoptedz = 0.95 and if the above coefficients are scaled so as to sum
to 1, the optimal predictor filter on quincunx sampling will be

I1l. OPTIMAL PREDICTORS WITHQUINCUNX SAMPLING

R[s1, s3] = AN AL (18) equal to
we obtain Pz, 20) =140.312(21 + 27 4+ 20 + 25 )
DI | edv2) —0.059(22 20 4 27 220 + 23251 + 272251
A= X)(1 = N3) tamtanta ntan)

= (19)

1= Mz = M2 = Aez)(1 = Aozy Y +0.058(23 + 27° + 25 + 25°). (23)
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W _@_ _@_ g with A = 0.95 yields the following filter for the determination
0 0 of (12)
2

Pz, z2) =1+ VT Py (ejMTW)
h, 4®_ @— g =1+ 2P (27 20, 2122)
2 2 =1+0299201(z 4+ 2; P + 22 + 25 1)
—0.024 735(21 23 + 2123 + 2] P2y 2 + 2125 %)

—0.024 735(25 122 4 202?427 2T F 2927 7)

Fig. 3. Conventional implementation of a two-channel filter bank.

+0.000269(2F + 272 + 25 + 237°). (25)
X0 [n] y[n] Both (23) and (25) are tested for each pyramid stage and the
—»|P(z2) R |— _prec_iictor producing the least error variance is_ used. The cost
in bitrate overhead of communicating the predictor type to the

decoder is negligible. The optimal prediction steps are followed
by update steps using

[0l wln]
—> U (Z) R - Ul(zl, ZQ) = D(]. + 21 + 22 —|—le2) (26)

where D is a free parameter. In fact for the case of quincunx
. . . . il . .
Fig. 4. Basic predictor and update unif.=) andU (=) are transfer functions samplingM is given by (17)¢/™ W = (e](“’l"""Z), e’ (“’17“’2))

of linear predict and update filters artlindicates the operation of rounding to andr; = [1 O]T in (16), the equivalent filter obtained is
the nearest integer. '

Ho(ejw) =1-P (e—j(’w1+’w2)’ ej(’wl—’LUZ))
Uy (e—j('w1+'w2)’ ej('wl—'WZ))
A + ej’wl -Uy (e—j('wl—'wz)7 ej('wl-l"wz)) .
(27)
The parameteb may be derived by forcing the sum of the coef-
ficients of the Oth and the 1st polyphase component of the equiv-
alent filter H(z) to be equal. This constraint is equivalent to re-

quiring thatH (¢’%) have a zero atv; = 7,we = . Easily,
(27) yields

e Up(1, 1)(P(1, 1) +1) =1. (28)

Since a “balanced” transfer function is requiréfi(1, 1) = 1,
and hence (27) implie®; (1, 1) = 1. Thus, from (28)

Ui(1,1) =43,

From which and (26)D is directly determined

D=4

This result holds independently of the actual prediction filter
P(z1, »2) used as long a# (1, 1) = 1. This provides the ap-
propriate update transfer function

Fig. 5. Quincunx grid.

X X . le Z1, Z2) = 1 1 4+ 21+ 29+ 2120 (29)
If the isotropic spectral density model ( )= )
for the quincunx based decomposition. A total number of at least

R[k1, ko] = ANV ki+k3 (24) four decomposition levels is needed for efficient decorrelation
of most grayscale images.

is used instead of the separable (18) model, direct approximatiom nonlinear scheme, named MINT, for the enhancement of
of (12) is difficult, since no closed form analytic expression ithe performance of this linear optimal prediction filter, origi-
known for thez-transforms of (24). However, the optimal FIRnally proposed and evaluated in [22], is described in the next
filters may be determined directly from (6) by formulating aection. In the enhanced coder, named MINT-U, prediction
large number of equations which are then solved using leastps using the statistically optimal prediction filters derived
squares techniques. If specifically only the coefficien{s, s|] above are followed by nonlinear processing and appropriate
with ||7]] < 2,|s|]| £ 2, are retained, numerical solution of (6)update steps.
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_|_
X
+
Z
Fig. 6. Simple lifting scheme using the predictor and update units of Fig. 4.
Py —| R v, [n] IV. NONLINEAR DIRECTIONAL PREDICTION
x [n] ) vin] The preceding section was devoted to the determination of the

— : median —— optimal linear prediction filters. In the present section we shall
develop nonlinear adaptations of the optimal linear filters which
6 —| R v [n] are orientation-sensitive, so as to adapt to the local image fea-
tures and thus further improve the prediction. More specifically
we shall employ thenedian hybridilters [30]-[32] as combi-
nations of median and linear filters

yli] = med (y(k)[i], =1, -, M)

av)

xq [n] win]
—»| U R }—»

wherey(®)[i], i = 1, ---, M are the outputs of the linear FIR
or lIR filters P (2).
More specifically, we propose the splitting of the optimal in-
terpolation filter into four directional prediction filters and the
N selection of their median as the estimate for the current pixel.
4’@ =\\;/ This technique originally described in [22] will be referred to

as median-based minimum variance interpolation (MINT). For

Fig. 7. Proposed design of predictor and update units.

each pixel the four directional predictors are given by
— P
P (21, 22) Z Z pr(E k)2 2y "
i=—Ny k=—N;
Ll -1 - Ny 0
B(21, 22) Z Z pr(i k)2 2y "
(a) i=0 k——Nl
U PW(71772 Z Zpl 71 72
e Ny ke
5 . NN,
s(21, 22) Z Z p1(i, k)2 'z "
=0 k=0
Following rounding, the median of the four predictors is applied
s e z as follows: the resulting four predictions are ordered according
®) to their magnitude and then the average of the second and third

is taken as the prediction. This modification in the prediction

Fig. 8. Implementation of a two-channel filter bank using nonlinear predlctlogtep glves the coder the erX|b|I|ty to select the best pl’edICtOI’

steps. (@) Analyzing bank and (b) synthesizing bank. depending on the features present in each local area. Thus the
estimatey(¢, j) of (¢, j) will be given by

Xolm]

X[m] Q{m] ?)(lv m) = med(yl\’(lv m)7 yE(lv m)7 yVV(lv m)7 yS(lv m))

— H® —@ ®_ G(z)

wherey, (I, m) is the output of the directional filter with =
N, E, W andS. These filters are often referred to 85 +
Fig. 9. General system for the optimization of intermediate image qualityfilters in the [30]-[32].
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Oth adaptive model for class coding

//////,/////// 1th adaptive model for class coding
\ 11th adaptive model for class coding
current —————_—___,,—— Oth adaptive model for sign coding
coefficient — sign
T 1th adaptive model for sign coding
Oth adaptive model for residual bits coding
1th adaptive model for residual bits coding
residual
bits

/W

6th adaptive model for residual coding

Fig. 10. Schematic description of the proposed entropy coder. The current coefficient is decomposed in three components, namely class,dighlztsd resi
Twelve probability models are used for coding the class. Two probability models are used for coding the sign. Seven probability models are usedHer cod

residual bits.

V. OPTIMAL ROwW—COLUMN SAMPLING AND OPTIMAL whence, for the first level of the filter bank

PRODUCTION OF INTERMEDIATE IMAGES IN PROGRESSIVE
CODING Pi(2%) = Tt z7%).
With row—column sampling where the matrices From (16), we have
[2 0} q {1 0} Ho(z) =1 — P (zHUL(2%) + 2U1(2?).
01 0 2 A choice for the update filter which has produced satisfactory

are used alternatively, the problem of determining the optimegsults [12] isU/; (z) = D(1 + z) whereD is a constant. This
prediction reduces to the one-dimensional case, i.e., to havitfpice will not influence the investigation of the optimal predic-
M = 2. Then, (10) and (12) degenerate to tion filter. As discussed earlier, it is desirable tH{(z) have

. on 1 ) (o) at least one zero at = =, i.e., atz = —1
<I>(e' ) =G(e )'2 (‘P(e'2 )+ (e )) Ho(2) = 0]oeey = HO(22) + 2 Y HE(22) = 0]ey
JWYy — —Jw Jaw
Ple )—%I:(F‘? ) Pife )<1>( " = HY(1) — Hy(1) = 0 = HY(1) = H}(1).
el el
sS=—"= —~.  (30) Therefore, if we also require that the analysis filter is balanced,
(o) %((I)(Cjw) +&(=em)) ie., Ho(l) =1 | g

For this, it is necessary to specify the spectral densities de- Ly ne . 1
scribing the class of images which are of interest. As before, the = Hy(1)=05=D(1+1)=05= D=y
optimal prediction filter will be determined using the separabl&hus, independently of the prediction filte¥ ») used, a reason-

spectral density model [26], [27] able choice for a update filter of length two is

R[s] = A\l Ui(z) = L1+ 2). (33)

hence The above prediction and update filter combination was iden-

tified in [12] as the (2, 2) integer wavelet having two zeros at

D) = A1 =N (31) of the analyzing and synthesizing lowpass filter transfer func-
(1-2A2)(1—Az"1) tions (see Fig. 8). Other filter banks of the same class are also
, o _ ) ) studied in [12] and are seen to have comparable and often better
wherez = ¢’*; application of (12) yields immediately overall performance. This performance depends on the type of
) A . image being coded. In the ensuing section an adaptive technique

L+eP () =14 5+ (32)  for the implementation of reversible integer transforms will be
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@

b|lc|d

current

a F coefficient

(b)

Fig. 12. (a) Parent coefficient and (b) adjacent pixels used for class coding.

Hy(e?™) is the analysis filter (16) in the equivalent formulation
of Fig. 3. In the case of a quincunx matiif this reduces to the
equation shown at the bottom of the next page and in the simple
one-dimensional (1-D) case

@ 2Hy(2~1)0(2)

Go(z) = Ho(2)®(z)Ho(z 1) + Ho(—2)®(—2)Ho(—271)
. (34)

whereH(z) is the analysis filter of the equivalent formulation
in Fig. 3

Ho(z) =1 — Pi(zHUL(2%) + 2UL(2?).

In fact, it has been shown in [33] that the above choice of the
synthesis filter minimizes the error variangé(z[m]—2[m])?}

and hence makes the intermediate outfjut] as similar to the
original as is possible by means of linear postfiltering.

VI. A CLASS OFADAPTIVE NONLINEAR LIFTING TRANSFORMS

Precisely as linear prediction based on quincunx sampling
may be improved by the direction-sensitive nonlinear postfil-
tering in Section Ill, simple row—column sampling may be very
considerably improved if adaptive, nonlinear variations of the
optimal filters are used. The approach proposed in this Section
employs nonlinear prediction steps to formulate a lifting scheme
presented using several alternative filters as well as the abevich adapts to the features of the area of the image being pro-
optimal predictor. cessed. Instead of using a single filter, three filters with dif-

It is important to note, that this filter bank was chosen solefgrent lengths are used. For the update step a single filter is used.
so as to minimize the prediction error variance and hence, tiggecifically, the filter banks referred to as (6,2),(4,2) in [12] are
the images produced by the corresponding lowpass band of tised, as well as the nominally optimal predictor (2,2) method
filter bank are not necessarily close approximations of the origxamined in Section Ill. These filter banks have correspond-
inal imagex[m4, m2] as one would very much desire in prodingly 6,4,2 vanishing moments of the analyzing high-pass filter
gressive transmission. To optimize the quality of the intermand two vanishing moments of the analyzing low pass filter.
diate image it suffices to pass at each level the lowpass imaieer their factorization into lifting steps [11], all three filter
2’o[m] through an upsampler and a synthesis filter given by tlianks employ the same update ste@lfz) denote the transfer
equation shown at the bottom of the page [33] (see Fig. 9) whéuactions of the linear prediction filters arid () the transfer

(b)

Fig. 11. Contexts used for (a) class (b) sign.

MHy(em7%)®(eIW)

Z Hy (ej(w+27rM—qu)) il (ej(w+27rM—qu)))H0 (e—j(w+2wM—qu))
k=0
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functions of the update filters (see Fig. 6), the filter banks amede. In the ensuing section we shall describe a novel approach
described by for the exploitation of this residual redundancy during the en-
tropy coding procedure.

(2,2)
Pi(z)=1(1+ z71) VIl. CONDITIONAL ARITHMETIC CODING OF TRANSFORMED
Ui(z) = %(1 +2) (35) IMAGES
For the coding of the coefficients produced by the nonlinear
transform of Sections IV and VI, an entropy coder combining
many features was implemented. The sequence of wavelet coef-
(4,2) ficients is first partitioned into a number of subsequences which
Pi(z) = %(1 +27h - %(2—2 + 2) consist of symbols having similar statistics. Each subsequence
Ui(z) = %(1 +2) (36) is coded using a separate arithmetic coder, i.e., a variety of adap-

tive probability models are employed. The lowpass image is first
decorrelated using linear DPCM and then coded using a sepa-
rate adaptive model. Each coefficient is represented by the class
(6,2) in which it belodngs, ri]ts silgn and thedresiduil bits speciging its

_ 7 “1y 25 -2 3, -3 2 exact magnitude. The classes used are shown in Table Il. For

Piz) = 128(1 2T T me( T T A (T ) example a coefficient with a value 6£80 is represented by

Ui(2) = (1 + 2). @7 the triad(10, —, 16). The first number in the triad is the class

. ) ) number. Since the coefficient belongs to the tenth class, it is
In [12] it was pointed out that transforms having morgy,eq phetween 64 and 127. The symbel'is its sign and the

analyzing vanishing moments perform better when appliggly\her 16 is the residual difference between the number being
to smooth images but their performance suffers for IMagg8hicted and the lowest number in its clas:= 80 — 64

containing many edges. Our intent here is to form a transformMyyq yepresentation is similar to that used in JPEG [34] and
capable of universally exceptional performance for all typ§fie s.p transform [35] for lossless coding, as well as in [18]
of images being 'Fransfgrmed. In_ o_rder to achieve this, e lossy compression. The whole range of the coefficients is
one of the three filters is first split into two parts (noncauszﬂivided into several classes. Due to the fact that the values of
and causal) providing six different filteds;(z) and six corre- 5 elet coefficients are concentrated around zero, more classes

sponding predictions;, ¢ = 1, ---, 6, i.e., are allotted to near-zero magnitudes (Table Il). Some classes
1y 2, N 1 3/ y_ 9 -1 _ 1 _-2 (0,1,2,3) include only one coefficient magnitude. This means
Pi(z) _2 Pll (2) _,Z {31 (2) 2_ 8% 5 8% that a coefficient belonging to such a class does not require
Piz)=5—52 Pl(x)=¢g — 5%+t 1357 residual bits for its representation since the class itself identi-
Pz)y=8" -2+ 327 fies the exact magnitude of the coefficient.

Each coefficient in the highpass bands is conditioned using

Following rounding, the median of the six predictors is aphe values of adjacent coefficients and the parent coefficient, i.e.,
plied as follows: the resulting six predictions are ordered athie coefficient lying in the lower scale and in the same spatial
cording to their magnitude and then the average of the third amdentation as shown in Fig. 11. The causal contexts used pre-
fourth is taken as the prediction. This modification in the predicume that the exact value of these wavelet coefficients is known,
tion step gives the coder the flexibility to select the best predictoe., all class, residual and sign bits of the previously coded coef-
depending on the features present in each local area. The figents are known. This means that the decoder while decoding
diction step is followed by the update step which is the sameth® current coefficient has fully recovered the past coefficients.
that used in the three filter banks and in Section V, the proposkedthis way, past coefficients that were used as a conditioning
transform is illustrated in Fig. 7. A total number of at least foucontext during encoding, are alsaplicitly known by the de-
levels of lowpass image decomposition is generally needed tmrder during the decoding process. This fact makes the forma-
satisfactory coding performance. tion of modeling contexts more flexible in comparison to lossy

Despite their excellent decorelating performance, which witioders since in the later case only quantized and not the original
be demonstrated in the experimental results section, waveleefficient values are known.
transforms are not able to remove all existing redundancy in aAn arithmetic coder [17] achieves significant compression
still image. This can be easily confirmed by inspection of thiey transmitting the more probable symbols in fewer bits than
wavelet representation of an image. It is seen that wavelet cotfe less probable ones. For example, the model may assign
ficients residing in edge areas have high variance at all scalesopredetermined probability to each possible symbol. These
the decomposition. These coefficients are the most expensivetobabilities may be determined by counting frequencies in

2Ho(271, 25 )P (21, 22)
Ho(z1, 22)®(21, 22)Ho(21, 22) + Ho(— 21, —22)®(—21, —22)Ho(—21, —22)

Go(z1, 22) =
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TABLE |
COMPARISON OF THEPROPOSEDAL, MINT-U (M-U) A DAPTIVE LIFTING TRANSFORMS WITH THEHINT, MORE, S+PAS WELL AS SEVERAL INTEGER
WAVELET TRANSFORMS WEIGHTED ENTROPIES OFTEST IMAGES ARE REPORTED

Image Raw | HINT | MORE | S+P | 2,2 | 42 | 24 | 44 |2+22]| 62 | M-U| AL

Lenna 744 | 4.53 4.30 4.33 | 435|430 | 436 | 430 | 430 |4.31 | 433 | 4.29
F16 6.79 | 5.37 5.07 519 | 514 | 5.17 | 5,17 | 517 | 5.16 | 5.20 | 5.14 | 5.12
Crowd | 6.78 | 4.59 4.22 429 | 435|426 | 439 | 4.28 | 4.27 | 4.26 | 4.28 | 4.24
Moon 6.71 | 5.12 4.98 5.00 | 5.00 | 5.01 | 5.02 | 5.00 | 5.00 | 5.02 | 4.99 | 4.99
Girl 6.42 | 4.80 4.62 4.65 | 4.65 | 4.62 | 4.67 | 4.62 | 4.62 | 4.63 | 465 | 4.61
Mall 6.99 | 5.49 5.17 522 | 527521 (531|522 | 520 {522 523|520
Pentagon | 6.52 | 5.57 5.32 5.38 | 540 | 5.38 | 5.42 | 5.38 | 5.38 | 5.39 | 5.34 | 5.37
Peppers | 7.59 | 5.08 4.61 4.67 | 4.61 | 4.61 | 4.62 | 4.60 | 4.61 |4.63} 4.61 | 4.58
Couple | 5.96 | 4.48 4.21 425 1419 | 420 | 421 | 420 | 419 | 422 | 422 | 4.17
Bridge | 7.66 | 6.00 5.88 5.88 | 585|585 587585 | 584 |587] 589|584
Barbara | 7.46 | 5.17 5.25 494 | 5.00 | 4.86 | 497 { 483 | 4.86 | 481 | 5.26 | 4.88
Zelda 7.33 | 4.05 3.92 3.87 | 3.85|3.83 1385|381 383 |3.84] 395|381
Gold 7.53 | 4.84 4.73 4.73 | 4.68 | 4.68 | 4.70 | 4.68 | 4.67 | 4.70 | 4.75 | 4.67
GirllT 729 | 4.31 4.05 4.06 | 4.08 | 4.00 | 4.10 | 3.99 | 3.99 |3.98 | 4.07 | 3.97
Hotel 7.55 | 4.97 4.69 497 | 4.71 | 470 | 4.73 | 4.70 | 4.70 |4.72 | 4.72 | 4.67
Boats 7.09 | 4.51 4.31 426 (423 | 419 | 424|419 | 418 |420} 4.36 | 4.17
Us 4.88 | 3.78 3.62 3.78 13.71 | 3.87 | 3.78 | 3.89 | 3.84 |3.94 | 3.77 | 3.72

representative samples of the input source to be transmittddht will be used is derived based on its causal neighborhood and
Such afixed model is communicated in advance to both ththen the corresponding adaptive model is used for the coding of
encoder and decoder, after which it is used for many imagéise class. In this way the activity in the vicinity of the current
Alternatively, the probabilities the model assign may chang®efficient provides some information about the magnitude of
as each symbol is transmitted, based on the symbol frequére current coefficient. By taking this into consideration, coeffi-
cies seerso farin this message. In such adaptive model cients of different activity are treated differently by the encoder,
there is no need for a representative sample of input data, bg-being fed to different adaptive coders. This higher order ap-
cause each message is treated as an independent unit, staptiogch reduces the eventual errorless encoding cost below the
from scratch. The encoder’'s model changes with each symficdt order entropy of the initial coefficient sequence. Similar
transmitted, and the decoder’s changes with each symbol cenclusions hold for residual bit and sign coding.

ceived, in precisely the same manner. Adaptive models are

used in all our experiments. A. Coding the Class

Splitting of the information of a coefficient in three compo-  Using the conditioning contexts described above and depicted
nents, namely class, residual bits and sign, requires the usenatig. 11(a), the adaptive probability model which will be used

different adaptive arithmetic coders (adaptive models) for ther the coding of the current coefficient is determined. This is
arithmetic coding of each component, since it is to be expectgéne as follows:

that the symbols corresponding to the three components have
different statistics. The adaptivity of the coder means that ini- O, = CLASS(A) (38)
tially all symbols are considered of having equal probability.
During encoding, however, the probability tables are updatéfi€re the parametet equals
and soon converge to the actual statistics of the source maxi-
mizing the coding efficiency of the arithmetic coder. In order la| + |b] + |¢| + |d]
. 0.5|p| + 1.5
to further enhance performance, we used many adaptive models A= 4 (39)
for coding each of the three components in which a coefficient 2
is split.

In each quadrant, the wavelet coefficients are visited in a lewherep denotes the parent coefficient [Fig. 12(a)] anb,c,d
icographical order. For each coefficient, a “contet is de- the four causal, adjacent coefficients of the current coefficient
rived based on the values of its adjacent coefficients which hgg. 12(b)]. Equation (38) gives the index of the adaptive prob-
already been visited and its parent coefficient. For example, fability model which will be used for the coding of the class
coding the class of a coefficient, the index of the adaptive modwl the current coefficient. The weighting factors in (39) were
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TABLE I of prediction errorgx for classC), for K = 1to K = N. This

CLASSES USED FOR TH&OD&%(E&TCT:ET%AGNITUDE INFORMATION OF error may be Computed iteratively as follows:

Class | magnitude mean_error[Cp(N + 1)]
N r
(; —?_, = N—Hmcan_m’?’m’[C’p(N)] + ;A—:ll (40)
2 2 In subsequent steps the predictidnvill be biased by the mean
3 3 error corresponding to the class whetéelongs. In this way,
4 4-5 the parameterd may be evaluated again as
5 6-7
6 8-11 A = A —mean_error[C,)].
7 12-15
8 16-31 In fact, as experimentally verified, an even better estimation of
o | 3263 A, yielding increased compression is afforded by (41), shown
— at the bottom of the page.
10 | 64127 The eventual index of the adaptive model that will be used is
11 128-255 given by

C, = CLASS(A). (42)

chosen heuristically, on t_he l_:)aS|s of experimentation. In [36] it The procedure described above is summarized in the fol-
was shown that features in different bands do not have the same.

i . . owing pseudocode:
orientation. However, in our coder we used the same context, i
i.e., the same causal set of coefficients, for all bands since we® COMpPuteA using (39).
found that taking into account different feature orientations, by * Find € using (38).
forming different conditioning contexts for different bands, does * COMPuteA using (41).
not yield significant profit. * Find ¢, using (42).

For example consider, as before, a coefficient valudd. * Update bias using (40)
This coefficient is represented by the trigt0, —, 16) The In our practical cod_er the parametdr was chosen to _be
first number in the triad is the class number. Thus, a coefficiefnaller than ten. In this way more recent symbols are given a
belonging to the 10th class is valued between 64 and 1Mherwe|ght|n the calculation of the mean error than symbols
The symbol “-” is its sign and the number 16 is the residudf the more remote past.
difference between the number being depicted and the lowest . . .
number in its class80 = 64 + 16. If/then equation (38) gives E Coding the Residual Bits
CLASS(70) = 10, the tenth arithmetic model will be used to The coding of the residual bits uses a different adaptive arith-
code the class of the current coefficient. In a similar way, dmetic model for each class. Since the decoder is aware of the
coefficient classes (0-11) are coded using the adaptive moekaiss in which the current coefficient belongs, it decodes the
whose index is derived using (38). residual bits using the adaptive model which has been formu-

The coding of the class parameter can be further optimiz&ded for the decoding of the residual bits of this class.
by using an error feedback technique, similar to that in [20 i _
based on local statistical analysis. Specifically, equation (38) €°ding the Sign
provides an index of the adaptive model that will be used for Efficient coding of the signs is probably the most challenging
coding the class. If the prediction errors are taken into consiof the three tasks. We code the signs coefficients using a very
eration then the efficiency of class coding may be improved. gimple context selector and two adaptive probability models.
order to achieve this, we consider the output of (38) and (39) A& used the available causally adjacent pixels lying on the hori-
preliminary information for the class of the current coefficienzontal and vertical directions [see Fig. 11(b)]. If the sum of these
Let e be the difference of the predicted value (39) and the atwo coefficients is positive, we use the first adaptive arithmetic
tual coefficient magnitude at th&th occurrence of the class.coder. Otherwise, we use the second arithmetic coder for the
Letalsomean_error[C,(N)] = (1/N) Zf‘r e be the average coding of the current sign. This intuitive approach produces a

A 4 Mmean-error [Cp — 1] + 2mean_error[Cy] + mean_error[Cy, + 1]
T 4

(41)

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 02:05 from IEEE Xplore. Restrictions apply.



12 IEEE TRANSACTION ON IMAGE PROCESSING, VOL. 10, NO. 1, JANUARY 2001

TABLE 1lI
COMPARISON OF THEPROPOSEDADAPTIVE LIFTING WITH CONDITIONAL ARITHMETIC (ALCA) CODING WITH THE JPEG-LS (J-LS)THE S+P GDER ASWELL AS
INTEGERWAVELET TRANSFORMCODERS EXACT BIT RATES ARE REPORTED THE ENTROPY CODER DESCRIBES INSECTION VII WAS USED WITH ALL INTEGER
WAVELET TRANSFORMCODERSAPART FROM THES+PAND THE AL TRANSFORM WHICH WEREALSO USED WITH THES+P ENTROPY CODER

Image J-LS I S+P ‘ SPCA\ 22 | 42 | 24 | 44 12422 6,2 | M-UCA | ALSP | ALCA

Lenna 4.24 | 417 | 413 | 415 | 411 | 416 | 411 | 4.11 | 4.12 4.15 4.14 4.10
F16 4.70 | 488 | 483 | 480 | 481 | 482 ) 481 | 481 | 4.83 4.80 4.83 4.79
Crowd | 3.91 | 4.00 | 3.97 |4.03| 3.95 |4.07 | 3.96 | 3.95 | 3.94 3.96 3.96 3.93
Moon 5.08 | 505 | 501 |5.00]| 501 |502]} 500 | 501 | 5.02 4.99 5.04 5.00
Girl 4.62 | 4.56 | 4.52 | 4.52 | 4.50 | 4.54 | 4.49 | 4.50 | 4.50 4.53 4.54 4.49
Mall 494 1 497 | 494 | 500|492 504 493 | 493 | 493 4.97 4.96 4.92
Pentagon | 5.28 | 531 | 5.28 | 5.31 | 5.27 | 5.32 | 5.27 | 5.27 | 5.28 5.29 5.31 5.27
Peppers | 4.51 | 4.58 | 4.50 |4.46 | 4.46 | 4.46 | 4.45 | 4.46 | 4.47 4.48 4.51 4.44
Couple | 3.77 | 3.97 | 3.93 |3.90 ] 390 | 3.92| 3.90 | 3.90 | 3.92 3.93 3.92 3.88
Bridge 5.79 | 581 | 5.76 | 575 575 | 5.77 | 5.75 | 5.74 | 5.76 5.81 5.79 5.74
Barbara | 4.86 | 4.55 | 4.48 | 4.55 | 4.45 | 4.53 | 4.42 | 4.45 | 4.42 4.77 4.54 4.46
Zelda 3.89 | 383 | 3.77 |3.741 373 |3.73|3.70 | 3.73 | 3.73 3.85 3.77 3.71
Gold 4.48 | 4.56 | 4.49 | 4.46 | 446 | 4.47 | 446 | 4.45 | 4.47 4.53 4.50 4.44
GirllI 393 | 396 | 390 [393) 384 {394 384 | 3.84 | 3.83 3.94 3.89 3.83
Hotel 4.38 | 453 | 448 | 444 | 444 {445 | 444 | 443 | 446 4.49 4.46 4.41
Boats 393 | 403 | 3.96 [394| 392 {395|3.90 | 391 | 3.92 4.08 3.96 3.90
Us 2.63 | 3.16 | 3.11 |3.07 3.18 |3.13 | 3.19 | 3.14 | 3.22 3.08 3.13 3.07

small gain in coding. This gain is due to the fact that the parti- The evaluation is based on the error image weighted first
tioning of the sign stream, using the aforementioned rule, prorder entropy and the exact lossless compression rates. The
duces two streams which have different statistics. Note, thegorithms compared were a collection of lossless coding
since adaptive arithmetic coders are used, these statistics relgdrithms having the capacity for progressive transmission
not be computed, stored or transmitted. The adaptive arithmaticluding the HINT method [3], [7], [37], the recently proposed
coder simply adapts to the statistics of each of the two inpMORE coder [9], the $P method [35] and a variety of
streams. integer wavelets [12], methods which are widely considered
As a whole, our coder uses 12 adaptive probability moddls represent the state-of-the-art in this area. Final weighted
(0-11) for the coding of the class of the current pixel, sevdinst order entropies are reported in Table I. As seen from this
models for the coding of the residual bits and two models for thable, MINT-U in some cases and AL in almost all cases,
coding ofthe sign. Itisimportant to note that all these models dead to better results than all other methods. AL appears to
adaptively updated while coding and decoding. This means tlgt generally more efficient than MINT-U. This contradicts to
the arithmetic coders learn the statistics of the input sequendbg. intuitive expectation that nonseparable prediction should
The adaptive models are reset at different levels of the pyrami more efficient than the separable one. Indeed, the optimal
The entropy coder is schematically described in Fig. 10. prediction performed by MINT-U on a quincunx lattice is
generally more efficient. However, the subsequent update step,
smoothing the zeroth polyphase component of the image, is
less efficient and the image is less smooth than that of the
The efficiency of the proposed methods for lossless codisgparable scheme. It appears that in most cases the better
was evaluated using a variety of grayscale images. The MINTdthoothing achieved by the separable scheme cancels out
method was implemented using the prediction filters (23) anlde better prediction of the optimal nonseparable scheme.
(25), as described in Section Ill, and the update filter (29). Thedditionally, in the nonseparable case, the error terms, once
separable AL transform was implemented using prediction fitalculated, are not further decomposed as in the separable
ters having 6, 4, and 2 vanishing moments and the update filtmse where row—column filtering is applied on both low-pass
given by equation (33). A maximum number of six levels oand error terms. We regard this as a possible method for the
decomposition was performed for all images. Note that in bottmprovement of the performance of the nonseparable scheme
algorithms, adaptation is always based on information thatasd improving the results of our method.
available during the decoding process and the scheme is pern conjunction with the efficient conditional arithmetic coder
fectly reversible without the need for other information. of Section VII, the novel decorrelation algorithms MINT-U

VIIl. EXPERIMENTAL RESULTS
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and AL form complete lossless compression methods termed2]
MINT-UCA and ALCA respectively. The lossless compression
performance of these methods in terms of exact bitrates is
reported in Table Ill. Rates obtained using the adaptive lifting [3]
(AL) transform and the $P entropy coder are also included )
(ALSP). The S$-P transformed images were encoded with both
the St+P entropy coder and the new entropy coder described
in this paper (this coder is termed SPCA in Table Ill). It is [B]
shown that the new entropy coder consistently outperfroms 6]
the St+P entropy coder for all images. As seen from Table I,
both proposed methods outperform the state-of-the-af S 7
coder. ALCA in particular is seen to outperform the lossless
compression algorithms capable of progressive transmission
that are included in our comparison. The proposed ALCA coderlé
is also completive with the JPEG-L®&oder which is based on
predictive methods and therefore does not afford preview andg]
progressive transmission capability. Other wavelet coders, e.g.,
[38], produce embedded streams and achieve very eﬁicier@IO]
lossless compression using pattern recognition methods for
context classification during the context arithmetic coding.

; A : 11]
However, this comes at the cost of significantly mcrease&
complexity for the entropy coder. [12]

IX. CONCLUSIONS [13]

In this paper, the optimal predictors of a lifting scheme in
the generaln-dimensional case were calculated and appliedi14]
with corresponding update filters for the lossless compression
of still images using first the quincunx sampling matrix and[15
then simple row—column sampling. In each case, the efficiency
of the linear predictors was enhanced by directional nonlinear
postprocessing in the quincunx case, and by adaptive—leng%6
nonlinear postprocessing in the row-—column case. Both
methods (MINT-U and AL respectively) are seen to perform[17]
well in the sense of leading to lower first order entropies tharhS]
other methods, with AL being more efficient than MINT-U in
most cases.

The exploitation of redundancy in wavelet transformed im-
ages during entropy coding of the MINT-U and AL methods was
also investigated. Different contexts were employed for codin
the class, residual bits and sign information. Correspondingly,?.f
number of different adaptive models were used for coding each
of the three components. Experimental results were obtained B%1]
applying the proposed methods to a large number of image§22
These evaluated the final bitrate needed for the implementation
of the new coders using the special efficient entropy coder of
Section VII. The performance of both schemes was seen to g&’!
competitive with that of state-of-the-art coders and ALCA in[24]
particular was shown to outperform other known algorithms for
lossless image coding with intermediate view capability in Pro,s;
gressive transmission.

[19]
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