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Abstract—The optimal predictors of a lifting scheme in the
general -dimensional case are obtained and applied for the
lossless compression of still images using first quincunx sampling
and then simple row–column sampling. In each case, the efficiency
of the linear predictors is enhanced nonlinearly. Directional
postprocessing is used in the quincunx case, and adaptive-length
postprocessing in the row–column case. Both methods are seen
to perform well. The resulting nonlinear interpolation schemes
achieve extremely efficient image decorrelation. We further
investigate context modeling and adaptive arithmetic coding of
wavelet coefficients in a lossless compression framework. Special
attention is given to the modeling contexts and the adaptation of
the arithmetic coder to the actual data. Experimental evaluation
shows that the best of the resulting coders produces better results
than other known algorithms for multiresolution-based lossless
image coding.

Index Terms—Arithmetic codes, image coding, wavelet trans-
forms.

I. INTRODUCTION

WAVELET decomposition has established itself as one of
the state of the art techniques for image coding prob-

lems because of its capability for allowing the generation of
lossy versions of an original image at multiple resolutions and
bitrates. Many applications such as the transmission of depth
maps for the construction of 3-D views of a scene [2] or the ef-
ficient storage and communications of medical images require
lossless coding [3], [4]. Most known lossless coders are based
on predictive decorrelation [5], [6] and do not have any preview
capability. In this paper, we propose lossless coders based on
wavelet transform that perform within a few percentage points
in comparison to state-of-the-art context-based coders (which
do not have preview capability, i.e., progressive transmission).

A wavelet transform is realized using filter banks which split
the image information into frequency subbands. Due to their
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inherent property of producing floating point output, classical
filter banks can not in general be used in lossless compression
schemes, since the coding cost for the coding of the floating
point wavelet coefficients would be prohibitively large. Instead,
interpolative pyramids may be used [7]–[9].

The lifting scheme has recently attracted much interest. It is a
way to implement critically sampled filter banks which have in-
teger output. The fundamentals of lifting can be found in [10].
An algorithm for decomposing wavelet transforms into lifting
steps was described in [11]. A complete presentation and eval-
uation of the lifting scheme for the separable case was given in
[12]. Extension to the general multidimensional case was pre-
sented in [13]. Finally, nonlinear wavelet transforms were re-
cently investigated in [14]–[16].

Following decorrelation of the input image by methods such
as the lifting transform, the second step in the coder construc-
tion is the design of efficient entropy coding methods for the
resulting coefficients. Efficient arithmetic coding [17] of the
wavelet representation of images has attracted significant in-
terest. Recently, new coders have been proposed for lossy [18],
[19] and lossless [20] compression which employ context mod-
eling for the entropy coding of wavelet coefficients.

In this paper we first calculate the optimal predictors, in the
sense of minimizing the prediction error variance of a wide-
sense stationary signal, of a lifting scheme in the general-di-
mensional case. Then, we apply these optimal predictor filters
with corresponding update filters for the lossless compression
of still images using first quincunx sampling and then simple
row–column sampling. In each case, and in order to improve
the results wherever the wide-sense stationarity assumption is
invalid, the efficiency of the linear predictors is enhanced by
nonlinear means, namely by directional postprocessing in the
quincunx case, and by adaptive-length postprocessing in the
row–column case. Both methods are seen to perform well. In the
latter case, in particular, the resulting filter bank in effect adapts
to the features of the area of the image being processed and in
this way it is shown to achieve superior performance than even
the most efficient known lossless compression methods capable
of progressive transmission. Furthermore, we develop efficient
modeling contexts which in combination with a local statistical
analysis and error feedback result in superior arithmetic coding
of transform coefficients.

This paper is organized as follows. Section II derives the op-
timal prediction filters for use with lifting for the general mul-
tidimensional case. In Section III, filters for a quincunx based
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decomposition are derived whose performance is enhanced by a
nonlinear, direction-sensitive implementation described in Sec-
tion IV. In Section V the optimal prediction filters for sepa-
rable lattices are determined and synthesis filters are derived for
the optimal production of intermediate images in progressive
coding. A class of separable adaptive lifting transforms which
enhances the performance of the filters in Section V, is presented
in Section VI. An entropy coder for the coding of the resulting
wavelet coefficients of Sections IV and VI, is described in Sec-
tion VII. Section VIII contains experimental results and finally
conclusions are drawn in Section IX.

II. L IFTING USING OPTIMAL PREDICTION FILTERS

A wavelet transform in its simplest form is obtained by fil-
tering an image with a filter bank such as that described in Fig. 2
composed of analysis filters followed by subsampling by
sampling matrix , upsampling, and synthesis filters. Exact
recovery of the initial image is possible if proper relationships
hold between the filters and [21].

In wavelet-based image representation the initial image is
decomposed into a coarse image and a high pass image con-
taining the detail information. By iterating the procedure de-
scribed above to the lowpass channel, a logarithmically split
filter-bank is formed consisting of wavelet coefficients at dif-
ferent scales and a lowpass image of very small dimensions.

The decorrelation efficiency of such a filter bank is greatly
affected by the multiplicities of the zeroes at of .
Thus, some of the main goals in the design of wavelet coders are
maintenance of the perfect reconstruction property and proper
selection of . A very efficient way to accomplish this is the
implementation of the filter bank using the “lifting scheme.” In
its most general form [10] this consists of splitting the image in
separate components, estimating components from others and
subsequently adding to components filtered versions of other
components. The step associated with estimating the intensity
of a coefficient is usually termedpredictionwhereas the step
associated with smoothing the coefficients on which the initial
prediction is based using the prediction errors is calledupdate.
If applied for lossless coding, the output of the predictor and
update filters must be rounded before the addition to the cor-
responding components. For a first analysis, however, we shall
ignore the effects of rounding.

A specific form of a filter bank coder based on a lifting
scheme was proposed in [13] and is depicted in Fig. 1.
In this, if is the sampling matrix, is the
number of its polyphase components, andits coset vectors,

. denote the prediction and the update
filters . The signals on each branch of
the filter bank are the polyphase components of the input

(1)

We shall assume that the input to the filter bank is a wide-
sense stationary process with autocorrelation function and
power spectral density

(2)

where the summation sign indicates a multiple sum and
.

The output of the prediction filters will be distinct wide-
sense stationary subsequences [22]

(3)

where is the impulse response of theth predictor.
The coefficients will minimize the corresponding mean-

square error variance

(4)
if the following relation holds (“orthogonality principle” [23]):

(5)

Thus

(6)

Multiplying both sides by and summing with respect
to yields

(7)

where

(8)

To express in terms of note the identity [24], [25]

if integer
otherwise

(9)

where are the closet vectors of and is a short
notation for . Thus

(10)
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Fig. 1. M-channel lifting scheme (for simplicity, the rounding operators are not shown).

Fig. 2. Equivalent filter bank.

Finally, on multiplying both sides of (7) by and summing
over , we obtain

where

(11)

from which the optimal predictors are immediately obtained

(12)

It is seen therefore, that a single transfer function given by
(12) may be used to describe the predictors minimizing each and
every error variance in (4). Since the denominator of (12) is
trivially seen to equal theth polyphase component of ,

the above is always, as expected, an interpolating filter, i.e., it is
of the form

We summarize the above results in a concluding theorem.
Theorem 1: An arbitrary lifting scheme shown in Fig. 1 is

optimized, in the sense of minimizing the prediction error vari-
ances (4) for each, , if the corresponding
predictor transfer functions are the polyphase com-
ponents of the function found by (12).

We will now derive the expression linking the lowpass filter
of a conventional filter bank with the predict and the update fil-
ters of a lifting-based implementation. The filter bank in Fig. 2
is equivalent to the filter bank of Fig. 1. Let and de-
note the transfer functions of the lowpass and highpass filters of
the equivalent filter bank depicted in Fig. 2. Consider a signal

as input to the filter bank in Fig. 2. Its Fourier transform
in polyphase expansion is given by

(13)

Let the transfer function of theth filter be

where and denote the polyphase com-
ponents of the signal and theth analysis filter, respectively,
defined as above. Then the signal in the lowpass channel of the
filter bank in Fig. 2 after filtering and downsampling is

where and are respectively theth polyphase com-
ponents of and . However from (1), theth polyphase
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component of is equal to the signal in theth branch of the
filter bank in Fig. 1, i.e., and hence

(14)

Trivially, however from Fig. 1, we also have

where

therefore

(15)

From the equivalence of (14) and (15) we conclude that

Thus, from (13)

(16)

This expression will be used in the sequel to determine the up-
date filter so that the resulting lowpass image is smooth and thus
suitable for parsimonious coding in the next step of the algo-
rithm.

The specific case of a quincunx sampling matrix will be con-
sidered next.

III. OPTIMAL PREDICTORS WITHQUINCUNX SAMPLING

If the quincunx (see Fig. 5) sampling matrix is used

(17)

and the separable spectral density model [26], [27] is adopted

(18)

we obtain

(19)

where . Application of (12) yields

(20)

where

(21)

This filtering operation may be implemented by spectral fac-
torization, following the methods in [28] and the IIR implemen-
tation methods in [29]. Alternately, a FIR approximation to (20)
may be obtained with the expansion

where

Easily, (20) is seen to be approximated by

(22)

For example, if only the above terms are retained, if
and if the above coefficients are scaled so as to sum

to 1, the optimal predictor filter on quincunx sampling will be
equal to

(23)
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Fig. 3. Conventional implementation of a two-channel filter bank.

Fig. 4. Basic predictor and update units.P (z) andU(z) are transfer functions
of linear predict and update filters andR indicates the operation of rounding to
the nearest integer.

Fig. 5. Quincunx grid.

If the isotropic spectral density model

(24)

is used instead of the separable (18) model, direct approximation
of (12) is difficult, since no closed form analytic expression is
known for the -transforms of (24). However, the optimal FIR
filters may be determined directly from (6) by formulating a
large number of equations which are then solved using least
squares techniques. If specifically only the coefficients
with , , are retained, numerical solution of (6)

with yields the following filter for the determination
of (12)

(25)

Both (23) and (25) are tested for each pyramid stage and the
predictor producing the least error variance is used. The cost
in bitrate overhead of communicating the predictor type to the
decoder is negligible. The optimal prediction steps are followed
by update steps using

(26)

where is a free parameter. In fact for the case of quincunx
sampling is given by (17),
and in (16), the equivalent filter obtained is

(27)

The parameter may be derived by forcing the sum of the coef-
ficients of the 0th and the 1st polyphase component of the equiv-
alent filter to be equal. This constraint is equivalent to re-
quiring that have a zero at , . Easily,
(27) yields

(28)

Since a “balanced” transfer function is required, ,
and hence (27) implies . Thus, from (28)

From which and (26), is directly determined

This result holds independently of the actual prediction filter
used as long as . This provides the ap-

propriate update transfer function

(29)

for the quincunx based decomposition. A total number of at least
four decomposition levels is needed for efficient decorrelation
of most grayscale images.

A nonlinear scheme, named MINT, for the enhancement of
the performance of this linear optimal prediction filter, origi-
nally proposed and evaluated in [22], is described in the next
section. In the enhanced coder, named MINT-U, prediction
steps using the statistically optimal prediction filters derived
above are followed by nonlinear processing and appropriate
update steps.
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Fig. 6. Simple lifting scheme using the predictor and update units of Fig. 4.

Fig. 7. Proposed design of predictor and update units.

(a)

(b)

Fig. 8. Implementation of a two-channel filter bank using nonlinear prediction
steps. (a) Analyzing bank and (b) synthesizing bank.

Fig. 9. General system for the optimization of intermediate image quality.

IV. NONLINEAR DIRECTIONAL PREDICTION

The preceding section was devoted to the determination of the
optimal linear prediction filters. In the present section we shall
develop nonlinear adaptations of the optimal linear filters which
are orientation-sensitive, so as to adapt to the local image fea-
tures and thus further improve the prediction. More specifically
we shall employ themedian hybridfilters [30]–[32] as combi-
nations of median and linear filters

where are the outputs of the linear FIR
or IIR filters .

More specifically, we propose the splitting of the optimal in-
terpolation filter into four directional prediction filters and the
selection of their median as the estimate for the current pixel.
This technique originally described in [22] will be referred to
as median-based minimum variance interpolation (MINT). For
each pixel the four directional predictors are given by

Following rounding, the median of the four predictors is applied
as follows: the resulting four predictions are ordered according
to their magnitude and then the average of the second and third
is taken as the prediction. This modification in the prediction
step gives the coder the flexibility to select the best predictor
depending on the features present in each local area. Thus the
estimate of will be given by

where is the output of the directional filter with
and . These filters are often referred to as

filters in the [30]–[32].
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Fig. 10. Schematic description of the proposed entropy coder. The current coefficient is decomposed in three components, namely class, sign and residual bits.
Twelve probability models are used for coding the class. Two probability models are used for coding the sign. Seven probability models are used for coding the
residual bits.

V. OPTIMAL ROW–COLUMN SAMPLING AND OPTIMAL

PRODUCTION OFINTERMEDIATE IMAGES IN PROGRESSIVE

CODING

With row–column sampling where the matrices

and

are used alternatively, the problem of determining the optimal
prediction reduces to the one-dimensional case, i.e., to having

. Then, (10) and (12) degenerate to

(30)

For this, it is necessary to specify the spectral densities de-
scribing the class of images which are of interest. As before, the
optimal prediction filter will be determined using the separable
spectral density model [26], [27]

hence

(31)

where ; application of (12) yields immediately

(32)

whence, for the first level of the filter bank

From (16), we have

A choice for the update filter which has produced satisfactory
results [12] is where is a constant. This
choice will not influence the investigation of the optimal predic-
tion filter. As discussed earlier, it is desirable that have
at least one zero at , i.e., at

Therefore, if we also require that the analysis filter is balanced,
i.e.,

Thus, independently of the prediction filter used, a reason-
able choice for a update filter of length two is

(33)

The above prediction and update filter combination was iden-
tified in [12] as the (2, 2) integer wavelet having two zeros at
of the analyzing and synthesizing lowpass filter transfer func-
tions (see Fig. 8). Other filter banks of the same class are also
studied in [12] and are seen to have comparable and often better
overall performance. This performance depends on the type of
image being coded. In the ensuing section an adaptive technique
for the implementation of reversible integer transforms will be
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(a)

(b)

Fig. 11. Contexts used for (a) class (b) sign.

presented using several alternative filters as well as the above
optimal predictor.

It is important to note, that this filter bank was chosen solely
so as to minimize the prediction error variance and hence, that
the images produced by the corresponding lowpass band of the
filter bank are not necessarily close approximations of the orig-
inal image as one would very much desire in pro-
gressive transmission. To optimize the quality of the interme-
diate image it suffices to pass at each level the lowpass image

through an upsampler and a synthesis filter given by the
equation shown at the bottom of the page [33] (see Fig. 9) where

(a)

(b)

Fig. 12. (a) Parent coefficient and (b) adjacent pixels used for class coding.

is the analysis filter (16) in the equivalent formulation
of Fig. 3. In the case of a quincunx matrix this reduces to the
equation shown at the bottom of the next page and in the simple
one-dimensional (1-D) case

(34)

where is the analysis filter of the equivalent formulation
in Fig. 3

In fact, it has been shown in [33] that the above choice of the
synthesis filter minimizes the error variance
and hence makes the intermediate output as similar to the
original as is possible by means of linear postfiltering.

VI. A CLASS OFADAPTIVE NONLINEAR LIFTING TRANSFORMS

Precisely as linear prediction based on quincunx sampling
may be improved by the direction-sensitive nonlinear postfil-
tering in Section III, simple row–column sampling may be very
considerably improved if adaptive, nonlinear variations of the
optimal filters are used. The approach proposed in this Section
employs nonlinear prediction steps to formulate a lifting scheme
which adapts to the features of the area of the image being pro-
cessed. Instead of using a single filter, three filters with dif-
ferent lengths are used. For the update step a single filter is used.
Specifically, the filter banks referred to as (6,2),(4,2) in [12] are
used, as well as the nominally optimal predictor (2,2) method
examined in Section III. These filter banks have correspond-
ingly 6,4,2 vanishing moments of the analyzing high-pass filter
and two vanishing moments of the analyzing low pass filter.
After their factorization into lifting steps [11], all three filter
banks employ the same update step. If denote the transfer
functions of the linear prediction filters and the transfer
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functions of the update filters (see Fig. 6), the filter banks are
described by

( )

(35)

( )

(36)

( )

(37)

In [12] it was pointed out that transforms having more
analyzing vanishing moments perform better when applied
to smooth images but their performance suffers for images
containing many edges. Our intent here is to form a transform
capable of universally exceptional performance for all types
of images being transformed. In order to achieve this, each
one of the three filters is first split into two parts (noncausal
and causal) providing six different filters and six corre-
sponding predictions , i.e.,

Following rounding, the median of the six predictors is ap-
plied as follows: the resulting six predictions are ordered ac-
cording to their magnitude and then the average of the third and
fourth is taken as the prediction. This modification in the predic-
tion step gives the coder the flexibility to select the best predictor
depending on the features present in each local area. The pre-
diction step is followed by the update step which is the same as
that used in the three filter banks and in Section V, the proposed
transform is illustrated in Fig. 7. A total number of at least four
levels of lowpass image decomposition is generally needed for
satisfactory coding performance.

Despite their excellent decorelating performance, which will
be demonstrated in the experimental results section, wavelet
transforms are not able to remove all existing redundancy in a
still image. This can be easily confirmed by inspection of the
wavelet representation of an image. It is seen that wavelet coef-
ficients residing in edge areas have high variance at all scales of
the decomposition. These coefficients are the most expensive to

code. In the ensuing section we shall describe a novel approach
for the exploitation of this residual redundancy during the en-
tropy coding procedure.

VII. CONDITIONAL ARITHMETIC CODING OF TRANSFORMED

IMAGES

For the coding of the coefficients produced by the nonlinear
transform of Sections IV and VI, an entropy coder combining
many features was implemented. The sequence of wavelet coef-
ficients is first partitioned into a number of subsequences which
consist of symbols having similar statistics. Each subsequence
is coded using a separate arithmetic coder, i.e., a variety of adap-
tive probability models are employed. The lowpass image is first
decorrelated using linear DPCM and then coded using a sepa-
rate adaptive model. Each coefficient is represented by the class
in which it belongs, its sign and the residual bits specifying its
exact magnitude. The classes used are shown in Table II. For
example a coefficient with a value of80 is represented by
the triad . The first number in the triad is the class
number. Since the coefficient belongs to the tenth class, it is
valued between 64 and 127. The symbol “” is its sign and the
number 16 is the residual difference between the number being
depicted and the lowest number in its class: .

This representation is similar to that used in JPEG [34] and
the S+P transform [35] for lossless coding, as well as in [18]
for lossy compression. The whole range of the coefficients is
divided into several classes. Due to the fact that the values of
wavelet coefficients are concentrated around zero, more classes
are allotted to near-zero magnitudes (Table II). Some classes
(0,1,2,3) include only one coefficient magnitude. This means
that a coefficient belonging to such a class does not require
residual bits for its representation since the class itself identi-
fies the exact magnitude of the coefficient.

Each coefficient in the highpass bands is conditioned using
the values of adjacent coefficients and the parent coefficient, i.e.,
the coefficient lying in the lower scale and in the same spatial
orientation as shown in Fig. 11. The causal contexts used pre-
sume that the exact value of these wavelet coefficients is known,
i.e., all class, residual and sign bits of the previously coded coef-
ficients are known. This means that the decoder while decoding
the current coefficient has fully recovered the past coefficients.
In this way, past coefficients that were used as a conditioning
context during encoding, are alsoexplicitly known by the de-
coder during the decoding process. This fact makes the forma-
tion of modeling contexts more flexible in comparison to lossy
coders since in the later case only quantized and not the original
coefficient values are known.

An arithmetic coder [17] achieves significant compression
by transmitting the more probable symbols in fewer bits than
the less probable ones. For example, the model may assign
a predetermined probability to each possible symbol. These
probabilities may be determined by counting frequencies in
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TABLE I
COMPARISON OF THEPROPOSEDAL, MINT-U (M-U) A DAPTIVE LIFTING TRANSFORMS WITH THEHINT, MORE, S+PAS WELL AS SEVERAL INTEGER

WAVELET TRANSFORMS. WEIGHTED ENTROPIES OFTEST IMAGES ARE REPORTED

representative samples of the input source to be transmitted.
Such afixed model is communicated in advance to both the
encoder and decoder, after which it is used for many images.
Alternatively, the probabilities the model assign may change
as each symbol is transmitted, based on the symbol frequen-
cies seenso far in this message. In such anadaptive model
there is no need for a representative sample of input data, be-
cause each message is treated as an independent unit, starting
from scratch. The encoder’s model changes with each symbol
transmitted, and the decoder’s changes with each symbol re-
ceived, in precisely the same manner. Adaptive models are
used in all our experiments.

Splitting of the information of a coefficient in three compo-
nents, namely class, residual bits and sign, requires the use of
different adaptive arithmetic coders (adaptive models) for the
arithmetic coding of each component, since it is to be expected
that the symbols corresponding to the three components have
different statistics. The adaptivity of the coder means that ini-
tially all symbols are considered of having equal probability.
During encoding, however, the probability tables are updated
and soon converge to the actual statistics of the source maxi-
mizing the coding efficiency of the arithmetic coder. In order
to further enhance performance, we used many adaptive models
for coding each of the three components in which a coefficient
is split.

In each quadrant, the wavelet coefficients are visited in a lex-
icographical order. For each coefficient, a “context” is de-
rived based on the values of its adjacent coefficients which have
already been visited and its parent coefficient. For example, for
coding the class of a coefficient, the index of the adaptive model

that will be used is derived based on its causal neighborhood and
then the corresponding adaptive model is used for the coding of
the class. In this way the activity in the vicinity of the current
coefficient provides some information about the magnitude of
the current coefficient. By taking this into consideration, coeffi-
cients of different activity are treated differently by the encoder,
by being fed to different adaptive coders. This higher order ap-
proach reduces the eventual errorless encoding cost below the
first order entropy of the initial coefficient sequence. Similar
conclusions hold for residual bit and sign coding.

A. Coding the Class

Using the conditioning contexts described above and depicted
in Fig. 11(a), the adaptive probability model which will be used
for the coding of the current coefficient is determined. This is
done as follows:

(38)

where the parameter equals

(39)

where denotes the parent coefficient [Fig. 12(a)] and, , ,
the four causal, adjacent coefficients of the current coefficient
[Fig. 12(b)]. Equation (38) gives the index of the adaptive prob-
ability model which will be used for the coding of the class
of the current coefficient. The weighting factors in (39) were
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TABLE II
CLASSES USED FOR THECODING OF THEMAGNITUDE INFORMATION OF

COEFFICIENTS

chosen heuristically, on the basis of experimentation. In [36] it
was shown that features in different bands do not have the same
orientation. However, in our coder we used the same context,
i.e., the same causal set of coefficients, for all bands since we
found that taking into account different feature orientations, by
forming different conditioning contexts for different bands, does
not yield significant profit.

For example consider, as before, a coefficient valued80.
This coefficient is represented by the triad The
first number in the triad is the class number. Thus, a coefficient
belonging to the 10th class is valued between 64 and 127.
The symbol “ ” is its sign and the number 16 is the residual
difference between the number being depicted and the lowest
number in its class: . If/then equation (38) gives

, the tenth arithmetic model will be used to
code the class of the current coefficient. In a similar way, all
coefficient classes (0–11) are coded using the adaptive model
whose index is derived using (38).

The coding of the class parameter can be further optimized
by using an error feedback technique, similar to that in [20],
based on local statistical analysis. Specifically, equation (38)
provides an index of the adaptive model that will be used for
coding the class. If the prediction errors are taken into consid-
eration then the efficiency of class coding may be improved. In
order to achieve this, we consider the output of (38) and (39) as
preliminary information for the class of the current coefficient.
Let be the difference of the predicted value (39) and the ac-
tual coefficient magnitude at the th occurrence of the class.
Let also be the average

of prediction errors for class for to . This
error may be computed iteratively as follows:

(40)

In subsequent steps the predictionwill be biased by the mean
error corresponding to the class wherebelongs. In this way,
the parameter may be evaluated again as

In fact, as experimentally verified, an even better estimation of
, yielding increased compression is afforded by (41), shown

at the bottom of the page.
The eventual index of the adaptive model that will be used is

given by

(42)

The procedure described above is summarized in the fol-
lowing pseudocode:

• Compute using (39).
• Find using (38).
• Compute using (41).
• Find using (42).
• Update bias using (40)

In our practical coder the parameter was chosen to be
smaller than ten. In this way more recent symbols are given a
higher weight in the calculation of the mean error than symbols
in the more remote past.

B. Coding the Residual Bits

The coding of the residual bits uses a different adaptive arith-
metic model for each class. Since the decoder is aware of the
class in which the current coefficient belongs, it decodes the
residual bits using the adaptive model which has been formu-
lated for the decoding of the residual bits of this class.

C. Coding the Sign

Efficient coding of the signs is probably the most challenging
of the three tasks. We code the signs coefficients using a very
simple context selector and two adaptive probability models.
We used the available causally adjacent pixels lying on the hori-
zontal and vertical directions [see Fig. 11(b)]. If the sum of these
two coefficients is positive, we use the first adaptive arithmetic
coder. Otherwise, we use the second arithmetic coder for the
coding of the current sign. This intuitive approach produces a

(41)
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TABLE III
COMPARISON OF THEPROPOSEDADAPTIVE LIFTING WITH CONDITIONAL ARITHMETIC (ALCA) CODING WITH THE JPEG-LS (J-LS),THE S+P CODER ASWELL AS

INTEGERWAVELET TRANSFORMCODERS. EXACT BIT RATES ARE REPORTED. THE ENTROPY CODER DESCRIBES INSECTION VII WAS USED WITH ALL INTEGER

WAVELET TRANSFORMCODERSAPART FROM THES+PAND THE AL TRANSFORM WHICH WEREALSO USED WITH THES+P ENTROPY CODER

small gain in coding. This gain is due to the fact that the parti-
tioning of the sign stream, using the aforementioned rule, pro-
duces two streams which have different statistics. Note, that
since adaptive arithmetic coders are used, these statistics need
not be computed, stored or transmitted. The adaptive arithmetic
coder simply adapts to the statistics of each of the two input
streams.

As a whole, our coder uses 12 adaptive probability models
(0–11) for the coding of the class of the current pixel, seven
models for the coding of the residual bits and two models for the
coding of the sign. It is important to note that all these models are
adaptively updated while coding and decoding. This means that
the arithmetic coders learn the statistics of the input sequences.
The adaptive models are reset at different levels of the pyramid.
The entropy coder is schematically described in Fig. 10.

VIII. E XPERIMENTAL RESULTS

The efficiency of the proposed methods for lossless coding
was evaluated using a variety of grayscale images. The MINT-U
method was implemented using the prediction filters (23) and
(25), as described in Section III, and the update filter (29). The
separable AL transform was implemented using prediction fil-
ters having 6, 4, and 2 vanishing moments and the update filter
given by equation (33). A maximum number of six levels of
decomposition was performed for all images. Note that in both
algorithms, adaptation is always based on information that is
available during the decoding process and the scheme is per-
fectly reversible without the need for other information.

The evaluation is based on the error image weighted first
order entropy and the exact lossless compression rates. The
algorithms compared were a collection of lossless coding
algorithms having the capacity for progressive transmission
including the HINT method [3], [7], [37], the recently proposed
MORE coder [9], the S P method [35] and a variety of
integer wavelets [12], methods which are widely considered
to represent the state-of-the-art in this area. Final weighted
first order entropies are reported in Table I. As seen from this
table, MINT-U in some cases and AL in almost all cases,
lead to better results than all other methods. AL appears to
be generally more efficient than MINT-U. This contradicts to
the intuitive expectation that nonseparable prediction should
be more efficient than the separable one. Indeed, the optimal
prediction performed by MINT-U on a quincunx lattice is
generally more efficient. However, the subsequent update step,
smoothing the zeroth polyphase component of the image, is
less efficient and the image is less smooth than that of the
separable scheme. It appears that in most cases the better
smoothing achieved by the separable scheme cancels out
the better prediction of the optimal nonseparable scheme.
Additionally, in the nonseparable case, the error terms, once
calculated, are not further decomposed as in the separable
case where row–column filtering is applied on both low-pass
and error terms. We regard this as a possible method for the
improvement of the performance of the nonseparable scheme
and improving the results of our method.

In conjunction with the efficient conditional arithmetic coder
of Section VII, the novel decorrelation algorithms MINT-U
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and AL form complete lossless compression methods termed
MINT-UCA and ALCA respectively. The lossless compression
performance of these methods in terms of exact bitrates is
reported in Table III. Rates obtained using the adaptive lifting
(AL) transform and the SP entropy coder are also included
(ALSP). The S P transformed images were encoded with both
the S P entropy coder and the new entropy coder described
in this paper (this coder is termed SPCA in Table III). It is
shown that the new entropy coder consistently outperfroms
the S P entropy coder for all images. As seen from Table III,
both proposed methods outperform the state-of-the-art SP
coder. ALCA in particular is seen to outperform the lossless
compression algorithms capable of progressive transmission
that are included in our comparison. The proposed ALCA coder
is also completive with the JPEG-LS1 coder which is based on
predictive methods and therefore does not afford preview and
progressive transmission capability. Other wavelet coders, e.g.,
[38], produce embedded streams and achieve very efficient
lossless compression using pattern recognition methods for
context classification during the context arithmetic coding.
However, this comes at the cost of significantly increased
complexity for the entropy coder.

IX. CONCLUSIONS

In this paper, the optimal predictors of a lifting scheme in
the general -dimensional case were calculated and applied
with corresponding update filters for the lossless compression
of still images using first the quincunx sampling matrix and
then simple row–column sampling. In each case, the efficiency
of the linear predictors was enhanced by directional nonlinear
postprocessing in the quincunx case, and by adaptive-length
nonlinear postprocessing in the row–column case. Both
methods (MINT-U and AL respectively) are seen to perform
well in the sense of leading to lower first order entropies than
other methods, with AL being more efficient than MINT-U in
most cases.

The exploitation of redundancy in wavelet transformed im-
ages during entropy coding of the MINT-U and AL methods was
also investigated. Different contexts were employed for coding
the class, residual bits and sign information. Correspondingly, a
number of different adaptive models were used for coding each
of the three components. Experimental results were obtained by
applying the proposed methods to a large number of images.
These evaluated the final bitrate needed for the implementation
of the new coders using the special efficient entropy coder of
Section VII. The performance of both schemes was seen to be
competitive with that of state-of-the-art coders and ALCA in
particular was shown to outperform other known algorithms for
lossless image coding with intermediate view capability in pro-
gressive transmission.
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