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A Filter Design Method for Minimizing Ringing in a
Region of Interest in MR Spectroscopic Images

Tariq Bakir and Stanley J. Reeves*

Abstract—Magnetic resonance spectroscopic imaging (MRSI)
requires a relatively long time to sample -space (the spatial fre-
quency domain), effectively lowpass filtering the resulting recon-
structed image. Ringing is especially problematic when a region of
interest (ROI) is close to a bright region outside the ROI, since the
bright region tends to create a ringing artifact into the ROI due to
the lowpass nature of the data. In this paper, we propose a method
that reduces the effect of a stronger signal region on a weaker signal
in a nearby ROI by designing a postprocessing filter that steers the
strong interference away from the ROI. The proposed method is
computationally simple both in the design stage and in applying it
to images. We present experiments that illustrate the value of the
technique.

Index Terms—Blur, interpolation, ringing reduction, spectro-
scopic imaging.

I. INTRODUCTION

A. Problem Description

I N MANY TYPES of medical imaging, the available resolu-
tion does not allow one to separate regions of interest from

the interference of nearby signal energy that is not of interest.
This problem is especially acute in some types of MRI. In par-
ticular, MR spectroscopic imaging (MRSI) requires a relatively
long time to sample-space (the spatial frequency domain) [1].

Spectroscopic imaging techniques are hybrid techniques
combining the ability of NMR spectroscopy to identify and
measure biochemical consituents with the ability of MR
imaging to localize these signals and thereby form useful maps
of anatomy. Thus, MRSI can present information in the form of
maps representing not simply anatomy, but representing local
metabolic states [2], or local tissue abnormalities. As a result of
this capability, MRSI has been proposed as a method to localize
and assess brain tumors [3] and multiple sclerosis [4] as well
as to determine the seizure focus of temporal lobe epilepsy
[5]. These spectroscopic imaging techniques are useful only
to the extent that they can clearly represent local differences
among tissue types; for example, they must have sufficient
spatial resolution to resolve the spectrum of heart muscle from
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Fig. 1. (a) Impulses observed after LPF and (b) impulses observed after
idealized postprocessing.

the spectrum of the blood within the neighboring ventricular
chambers.

Since only a limited region of the spatial-frequency domain
can be sampled, the image is effectively lowpass filtered by the
acquisition method. The ringing caused by this lowpass filtering
is especially problematic if the signal intensity from one region
is much stronger than a nearby region of interest (ROI). The tails
of the point-spread function (PSF) ring and decay over a broad
area, causing the strong unwanted signal to appear in the ROI
and thereby making it difficult to interpret the image in the ROI.

In essence, the goal of this work is to minimize the effects of
ringing of one region into another. The potential benefits of this
are both visual and analytical. Some applications require that
an ROI be viewed where there is ringing caused by interference
from nearby regions with strong intensity. This makes visual as-
sessment difficult in the ROI. In other applications, the ultimate
goal is not to view an image but rather to measure the concen-
tration of some chemical in a specified region. This region may
be close to an unwanted signal that rings into the ROI and in-
terferes with the measurement process. In this case we desire a
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Fig. 2. 1-D Uncorrelated model with nonlinear constraint.

filter that allows a better approximation of the true concentra-
tion in the specified region. Measuring the concentration of a
particular chemical in a specified ROI in the brain from MRSI
images is being used increasingly as a tool in the treatment of
diseases such as epilepsy and other disorders that manifest cer-
tain biochemical anomalies [5].

The problem of reducing the ringing in an image has been
addressed in several ways. Some methods use prior knowledge
about an image. For example, if the image is known to have
a finite spatial region of support (ROS), it is possible to re-
duce ringing by extrapolating the missing higher frequencies
[6]. The problem with this method is that most of the improve-
ment is near the boundary of the spatial ROS and it is compu-
tationally expensive. Other researchers have used prior infor-
mation from a high-resolution MRI scout to obtain a model for
the corresponding spectroscopic image. The earliest of these,
spectral localization by imaging (SLIM), modeled the data as
homogeneous compartments whose shape was derived from a
corresponding MR proton density image [7]. Extensions of this
idea have also been proposed [8], [9]. These methods require
the availability of a high-resolution scout image, and the re-
sulting reconstructions are somewhat sensitive to errors in the
model used. Another approach attempts to account for the pres-
ence of edges in images by using adaptive regularization or
Bayesian methods, such as in [10]. These methods generally
model the image as smooth regions with edge-like boundaries.

The modeling determines where edges fall in an attempt to re-
duce the blurring across them and associated ringing artifacts.
These methods are powerful but are computationally expensive.
Furthermore, artifacts can be quite severe even with small er-
rors in the locations of boundaries. The resulting images are also
sometimes difficult to interpret.

In the next section, we formulate the ringing minimization
problem as a filter design problem, propose an optimization al-
gorithm, and demonstrate the method with simulations. In Sec-
tion III, we extend the method to the problem of estimating con-
centration in a region and demonstrate the method using simu-
lations. In Section IV, we present results using real image data.
We discuss our results and draw conclusions in Section V.

II. BASIC DESIGN METHOD

We desire a way to minimize the ringing of the stronger un-
wanted signal into the weaker signal ROI. The solution we pro-
pose is motivated primarily by problems in MRI and MRSI;
however, the solution is applicable to any kind of low-resolution
image that needs to be interpolated for viewing an ROI without
interference from a strong nearby signal. In essence, we propose
to design a postprocessing filter that modifies the PSF so that
the tails of the PSF steer the ringing from the interfering signal
away from the ROI. As in all filter design problems, this strategy
involves a tradeoff. We reduce the ringing from a large nearby
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Fig. 3. Comparison of original and optimized PSF—original= dashed, optimized= solid.

signal in one place at the expense of allowing more ringing from
other places where the signal is not as strong. This allows us to
reduce the overall error in the ROI.

This idea is illustrated in Fig. 1. Suppose we are interested in
the strength of a small impulsive signal to the right of a much
larger impulsive signal that is not of interest. Due to the ban-
dlimited imaging process, the resulting image will be a super-
position of two sinc functions, shown in Fig. 1(a). The first
sidelobe to the right of the large signal is so large that it ob-
scures the true strength of the signal on the right. Suppose, how-
ever, that through postprocessing methods the overall PSF could
be reshaped to eliminate sidelobes on the right. Then the two
constituent signals would appear as in Fig. 1(b). In this case,
the large signal no longer generates interfering sidelobes, and
the strength of the smaller signal of interest can be observed
clearly. The goal of our method is to suppress interfering side-
lobes as much as possible using a simple postprocessing method
but without necessarily sacrificing overall resolution, as is the
case when the frequency response is merely apodized.

Our method assumes that the ROI can be specified before de-
signing the filter and that we know something about the relative
expected local signal and noise strength. While this information
is necessary for the proposed method, the resulting design is
rather insensitive to small errors in the prior information used;
that is, the optimality of the design degrades slowly as errors are
introduced into the prior information. Therefore, we can apply
the technique when we only have a general idea where the strong
signal is and how strong it is relative to the signal in the ROI.
We will demonstrate this claim later in our simulations. Also, as
long as the noise is relatively small compared to the signal, the
resulting design is only slightly affected by the noise variance
assumed [13].

A. Criterion

We model the observed image data as:

(1)

where is the high-resolution image observed by the measure-
ment process, is white measurement noise, andis a filter ex-
pressing the bandlimiting operation associated with the imaging
process. The operation in this context denotes convolution
of the image represented by the vectorwith the image repre-
sented by the vector. Both the observed signal and noise are
equally bandlimited by the imaging system. Therefore, the filter

is applied to both.
The filter design problem is based on the definition of a mean

square error (MSE) criterion for the error that is caused by the
ringing and blurring in the ROI. The resulting quadratic cost for-
mulation is straightforward to minimize and is easily modified
for various situations that we discuss later. The problem can be
formulated as a constrained optimization problem as follows:

over subject to (2)

where is the filter to be designed. The filteris constrained to
have the same ROS as in the frequency domain. This allows
us to simplify (2) to:

over subject to

(3)

The equation above can be written in a more convenient form by
grouping similar terms and showing the explicit dependence on
the ROI. We accomplish this by defining a binary mask
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Fig. 4. Correlated model effect on designed filter.

that selects only the ROI and zeros out everything outside the
ROI. Thus, the error becomes

(4)

The minimum for the unconstrained problem occurs when
. This means the constrained problem can be

interpreted as matching to an impulse as closely as pos-
sible according to the weighting above while satisfying the
frequency-domain ROS constraint. (This viewpoint is later
generalized when we discuss the concentration measurement
problem.) Since intuitively we are trying to matchto an im-
pulse with (ordinarily) a lowpass frequency constraint imposed,

is expected to have a shape similar to a sinc function but with
smaller lobes oriented in the relative direction of the ROI from
the direction of the large interfering signal nearby. We treat two
possible cases for the constraint:

1) The magnitude may be constrained to be an ideal lowpass
filter (LPF) with unity gain in the ROS. This is a nonlinear
constraint since it can not be implemented in terms of
convolutions.

2) The magnitude of the Fourier transform may be con-
strained to be zero outside the ROS with no constraint
inside the ROS. This is a linear constraint since the
constraint can be implemented as a bandlimiting operator

convolved with the filter to be designed.

In terms of clinical applications, the nonlinear constraint pro-
vides a more generally applicable design. The nonlinear con-
straint may be used in a wider variety of problems since it does
not modify the acquired data as drastically (does not attenuate
any components because of the unity gain requirement). Fur-
thermore, it makes the design less sensitive to the prior informa-
tion about the relative variances of different parts of the image.
In both cases, (4) is used but with the appropriate constraint im-
posed.

B. Algorithm

The conjugate gradients (CG) method was used as the basis
for the optimization algorithm because of its ease of implemen-
tation and speed of convergence. Unfortunately, the problem
formulated in (3) is a constrained optimization problem for
which standard CG is inappropriate. However, CG can be
modified to incorporate constraints by using the projection
method. The projection method involves writing the iteration
as an unconstrained iteration but projecting the unconstrained
update at each iteration onto the set of feasible solutions
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Fig. 5. Linear constraint effect.

using a projection operator [11]. If we merely constrain
the frequency response to be zero outside the measured ROS,
the constraint set is convex and the modified CG algorithm
is guaranteed to converge to the optimal constrained solution
[12]. However, if we also constrain the magnitude response in
the ROS, the constraint set is no longer convex and convergence
to the optimal solution is not guaranteed. Nevertheless, our
numerical experiments indicated no evidence of being trapped
in a local minimum with this constraint [13].

The modified CG algorithm is given below:

Initialize:

Do:

until convergence criterion is satisfied.

We desire to rewrite (4) by taking the expectation, assuming a
specific model for the autocorrelations of and .

(5)

There are several ways of defining the models to be used for
the correlation functions , and in the
problem. Although complex models can be formulated for the
correlation functions, we experimented with two simple auto-
correlation models for the signal . The first was a simple
uncorrelated model, and the second was a correlated autocorre-
lation model based on a first-order correlation [14] with a non-
stationary variance. In both cases the measurement noise was
assumed to be white (Gaussian), and the cross correlation be-
tween signal and noise was assumed to be zero. This means for
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Fig. 6. Original image with ROI shown.

the uncorrelated case

(6)

(7)

(8)

This model assumes no local correlation but allows the signal
variance to vary from point to point. Using this model in (4) and
evaluating the expected value, we get:

(9)

The gradient of is given by

(10)

Simplifying (10) by writing the summation notation for the con-
volutions as convolution operators we obtain:

(11)

Thus, we see that implementation of the gradient only requires
convolution and pointwise signal multiplication. Other ways to
ease the computational complexity, such as deriving an explicit
form for the step size in the CG method, can be found in [13].

(a)

(b)

(c)

Fig. 7. Design parameters.

The correlated signal model is a more accurate description of
the statistics of most real-world images. For a correlated model
we assume a signal correlation function with the following form:

(12)

We use the same noise model (7) as for the uncorrelated case.
For small , the correlated signal model can be approximated as

(13)

Note that the approximate correlation model is formally invalid
as a correlation function [14] but is retained due to its simplicity
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(a)

(b)

Fig. 8. Optimized filter as an image and its Fourier magnitude.

of form and consequently its computational simplicity. The cri-
terion is modified for the correlated model as:

(14)

The gradient is

(a)

(b)

Fig. 9. (a) Image reconstructed with zeropadding and inverse FFT, (b)
reconstructed image after applyingh .

(15)

The result in the correlated model case is a complicated gra-
dient expression that can not be implemented as convolutions
and hence is computationally inefficient when compared to the
gradient form derived for the uncorrelated case.

C. 1-D Simulations

Some issues arising in this design method are more easily vi-
sualized in 1-D. Therefore, we begin with a set of 1-D simula-
tions and follow this with 2-D simulations where that is more
appropriate.

1) Resolution: For our standard approach, we constrained
the Fourier magnitude to be constant in the ROS and zero else-
where. We chose to impose a constant constraint so that the re-
sult would be less sensitive to the exact location of the ROI and
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(a)

(b)

Fig. 10. Absolute error in ROI.

the exact values of relative variances assumed in different re-
gions of the image. If the ROI includes a region very close to the
interfering signal, a constant magnitude tends to be best since
the mainlobe width is approximately preserved; that is, ringing
is reduced but not at the expense of a loss of resolution. To see
this, we did a simple comparison with a 1-D design problem.

The signal standard deviation in this case was defined to be
40 in the weak signal region and 800 in the strong signal region
and the noise variance is unity. The ROI is also shown and was
defined to be between points 15 and 25, which is close to the
stronger region of the signal. The results for this case are shown
in Fig. 2.

Also shown in Fig. 2 is the magnitude and the phase of the
Fourier transform of . Note that the magnitude satisfies an
ideal LPF as designed. Also note how the sidelobes are smaller
on one side of the designed filter to reduce the error associ-
ated with sidelobes when the designed filter is convolved with
a signal that has the variance characteristics defined.

To see that resolution has not been sacrificed, we plotted an
interpolated version of the designed PSF along with the original
PSF. A visual inspection shows that the mainlobe width of the
designed PSF is almost exactly the same as that of the original

(a)

(b)

Fig. 11. Circular ROS: Optimized filter as an image and its Fourier magnitude.

PSF in Fig. 3. Measurements show that the full-width half-max
(FWHM) resolution is 5.25 samples in the original and 5.5 sam-
ples in the designed PSF. Thus, the primary gains in the PSF
design come from steering the ringing away from the ROI. This
behavior is representative of the results observed in all our sim-
ulations.

2) Correlated and Uncorrelated Model Comparison:We
consider now whether the extra computation and complexity
required for the correlated case is justified by superior results.
To compare the filter designed from the correlated and uncorre-
lated correlation models we consider the same design problem
as discussed previously. The same parameters were used for
the correlated case but with a correlated autocorrelation model
for with . The resulting filter is shown in Fig. 4.

The main difference in the result is that the central lobe of the
filter increases slightly in magnitude (by 0.007) and becomes
slightly narrower. There is little change in the sidelobes between
the correlated and the uncorrelated model. This result illustrates
that using the correlated autocorrelation model provides little
improvement in reducing the sidelobes or modifying the main-
lobe, while the computational complexity has increased signif-
icantly. Further experiments confirmed this observation [13].

3) Magnitude Constraint Effect:The constraint can be
a nonlinear constraint (an ideal LPF with unity gain in the
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(a)

(b)

Fig. 12. Variance effect: Optimized filter image and Fourier transform
magnitude ofh .

frequency ROS) or a linear constraint (zero response outside
the passband). The linear constraint does not impose the unity
gain requirement and thus a rolling-off effect is allowed for the
magnitude of the Fourier transform of as seen in Fig. 5.
This rolling-off effect means that the sidelobes can be made
smaller, leading to less error associated with sidelobes. The
peak value is decreased slightly because forcing the PSF to
be smaller makes the error term associated with ringing from
outside the ROI smaller at the expense of more error in the
relatively small signal matching term.

D. 2-D Simulations

1) Baseline 2-D Simulation:We used the digital head
phantom shown in Fig. 6 to test our method on a 2-D problem.
This was considered to be the high-resolution original image.
The ROI in the image is marked by a small square. We assumed
that the data from a lowpass -space region around the
origin was available for reconstructing the image. This data was
used to reconstruct (interpolate) the image on a grid.

(a)

(b)

Fig. 13. Variance effect: (a) image reconstructed with zeropadding and inverse
FFT, (b) reconstructed image after applyingh .

If we reconstruct using the standard approach of zeropadding
the frequency domain to and taking an inverse FFT,
we obtain the image shown in Fig. 9(a).

We designed a postprocessing filter to improve this result in
the ROI. We assumed a known relative local standard deviation
map of the signal as shown in Fig. 7. The ratio of the stronger
signal standard deviation in the scalp to the weaker signal stan-
dard deviation in the ROI was 10. Note that the standard devia-
tion image model used in this case differs from that of a typical
MRI scan in that we assumed large signal standard deviation
outside the head. This is simply a design technique we used to
emphasize that interference from the outer ring is what we are
trying to minimize; that is, the main goal is to prevent interfer-
ence from outside of the brain into the ROI rather than interfer-
ence from other parts within the brain.

Using these assumptions, we designed the filter by min-
imizing (9) under the constraint that the Fourier magnitude
is constant in the ROS and zero elsewhere. As mentioned
previously, if the ROI includes a region very close to the
interfering signal, a constant magnitude tends to be best since
the mainlobe width is approximately preserved. However, if
the ROI is farther away from the interfering signal, it is better
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(a)

(b)

Fig. 14. ROS definition effect: Optimized filter image and Fourier transform
magnitude ofh .

to apodize the frequency response to reduce the effect of tails
at the expense of a broader mainlobe. The constant magnitude
constraint can easily be relaxed if a more case-specific result
is desired. The resulting optimized filter is shown as an image
along with its Fourier magnitude in Fig. 8. Note that in this case
the optimized filter is asymmetric along both axes since the
ROI is close to the upper and left sides of the outer ring. Thus,
there are two possible directions that can ring into the ROI. As
the design requires, the Fourier transform of matches the
ROS defined in the problem.

To show that the designed filter indeed reduces the ringing in
the ROI, consider the original image shown in Fig. 6 (with the
ROI marked by a small square). After reconstructing the image
with the optimal filter response , we obtained the image
shown in Fig. 9(b). The MSE for the LPF image ROI was
and for the optimized image ROI was , a 66% reduction.
The absolute error (defined aserror original �ltered )
between the original and the two filtered images is shown as an
image in Fig. 10 in the ROI. In these images the whiter a pixel

(a)

(b)

Fig. 15. ROS definition effect: (a) image reconstructed with zeropadding and
inverse FFT, (b) reconstructed image after applyingh .

is, the larger the error is. Note that these images are displayed
with the same intensity scale.

2) Circular ROS: In this case we modified the previous ex-
ample so that the ROS is circular instead of rectangular and all
other parameters were the same. The resulting optimized filter
exhibits in this case circular asymmetry along the diagonal axis
as shown in Fig. 11. The MSE for the LPF ROI was and
for the optimized ROI was , a 64% reduction.

3) Effect of Variance:As the strength of the outer signal
from the scalp becomes stronger, it becomes more difficult to
reduce the effect of the ringing. In this case we considered a rel-
ative standard deviation of 20 between the signal in the ROI and
the stronger signal. The other parameters were left the same as
the baseline case. The optimized filter is shown in Fig. 12 with
the Fourier transform magnitude of the designed filter. Note how
the designed filter is slightly more asymmetric than in Fig. 8
since the relative variance is larger. The sidelobes decay even
faster on one side to try to reduce the interference from the
strong signal region.

The LPF image and the image after applying the designed
filter are shown in Fig. 13. The MSE in this case was and
for the optimized image , a 60% reduction. We see that
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(a)

(b) (c)

Fig. 16. (a) Lowpass image, (b) Composite optimized image, and (c) Image reconstructed with Hamming window.

(a) (b)

Fig. 17. (a) Original image and (b) regions for concentration measurements.

the MSE increased since there was a larger amount of ringing,
but the designed filter still managed to reduce it. Our exper-

iments show that increasing the relative variance beyond the
value used in this example does not yield significantly different
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Fig. 18. Design parameters.

Fig. 19. Optimized filter image.

filter shapes. This justifies our claim that the relative strength of
the signals is not critical as long as one is much larger than the
other.

4) Effect of ROS Definition and ROI Location:The ROS is
specified to match the way in which the frequency samples for
the image were acquired. The fewer samples obtained, the more
the image manifests ringing and blurring. In this simulation, we
reduced the size of the ROS by half to see the effect it has on
the performance of the designed filter. We also defined an ROI
that has ringing influence mainly from one side to show how the
design procedure adapts to such a case. Intuitively, one would

expect worse performance since more ringing is unavoidable.
The optimized filter image is shown Fig. 14. The MSE for the
LPF image was and for the optimized image , an
86% improvement. The original image after the LPF and the
result after LPF and filtering with are shown in Fig. 15.
The increased blurring and ringing is evident in both images;
however, the filtered image ROI is a significant improvement
over the unfiltered image.

5) Composite Image:A composite reconstructed image was
formed as follows. The image was divided into blocks,
each of which was considered one at a time to be the ROI. An
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Fig. 20. Optimized filter cross section plot.

TABLE I
COMPARISON OFCONCENTRATION ESTIMATES

optimized filter was designed for each ROI, and then the image
was reconstructed with the optimized filter.

The ROI’s were extracted from each reconstructed image ob-
tained by filtering the lowpass image in Fig. 16(a) and then were
put together to form a composite image. The resulting image is
shown in Fig. 16(b). For comparison purposes an image was re-
constructed using a Hamming window to roll off the frequency
response. The result is shown in 16(c). While there is signifi-
cantly less ringing in the Hamming reconstruction, the result is
obtained at the expense of a significant loss of resolution. On
the other hand, the optimized reconstruction has significantly
less ringing than the original lowpass reconstruction but without
any noticeable loss of resolution. However, blocking artifacts
are apparent in the optimized reconstruction. A more sophisti-
cated method could easily be developed to interpolate between
blocks or overlap blocks so that no blocking artifact occurs, but

we have not explored that in this paper. While the composite
image is useful for understanding and comparing our method to
others, the primary value of the method as proposed here is to
reconstruct a small ROI more faithfully rather than improve an
entire image.

III. FILTER DESIGN FORMEASURINGCONCENTRATION

A. Criterion

In the previous section, we designed a filter with the goal of
reducing ringing in a given region. Our interest in this section is
to design a filter that minimizes the effects of ringing and at the
same time acts as an averaging kernel to measure the concentra-
tion in a given region. We observe that convolution can be used
to find the local average of a certain region. The kernel acts as
a moving average mask. Thus each pixel of the resulting image
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Fig. 21. Averaging kernel size effect: Optimized filter image.

after convolution is an average of a corresponding region of the
original image. The concepts developed earlier can be modified
by interpreting the problem as designing a filter that will match
the averaging kernel instead of an impulse as closely as possible
while satisfying the imposed constraint. That means (4) is mod-
ified to be:

(16)

where is the averaging kernel that we are trying to
match now. The weighting function is chosen as a delta
function at the location in the average image where the av-
erage is desired. As previously explained, the constraint can
be either linear or nonlinear. However, since the final objec-
tive is not an image for visual inspection we use a linear con-
straint. The reason for this is that the linear constraint allows
the rolling off of the Fourier transform magnitude; thus, the
sidelobes will be smaller than with a nonlinear constraint. We
could also choose to enforce a magnitude constraint equal to
the product of the ROS and the Fourier transform magnitude of
the ideal averaging kernel. The expected results should again ex-
hibit the asymmetric behavior that attempts to reduce the ringing
into the region where we are trying to measure the concentra-
tion.

B. Simulations

To demonstrate the effectiveness of optimized filtering, con-
sider the synthetic image shown in Fig. 17(a). This image at-
tempts to simulate the varying intensities in the concentration
of an MRI image. We consider this image to be the original.
As in the previous simulations, we defined the ROI (a single

Fig. 22. Design parameters.

point that samples the averaged image), the signal standard de-
viation image which has a relative standard deviation of 10, the
measurement noise standard deviation of 1, and the size of the
averaging kernel of . We computed an optimized filter
to compute concentration in each of the eight different
regions shown in Fig. 17(b). The prior information assumed for
Region 3 is shown in Fig. 18.

We show in Fig. 19 the optimized filter as an image with its
Fourier transform magnitude for computing the concentration of
Region 3. Note that this time the Fourier transform magnitude
is no longer that of an ideal LPF, but rather there is a rolling off
of the edges. Since the rolling off in this case reduces the side-
lobes very rapidly, for better visibility we plot a cross section of
the optimized filter along its two axes as shown in Fig. 20. As
can be seen from the plots, the designed filter is mainly asym-
metric along the axis. This is because the optimized filter is
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Fig. 23. Optimized filter as an image and its Fourier magnitude.

attempting to reduce the ringing primarily from the left side of
the outer ring.

Concentration was calculated using the original image, and
estimates were made using the lowpass image before postpro-
cessing and the same image after postprocessing with the ap-
propriate optimized filter. On average, the optimized filter did a
better job of estimating the concentration, since it reduced the
amount of ringing from the outer edges. For comparison pur-
poses, concentration was also estimated from an image recon-
structed using a Hamming window to reduce ringing artifacts.
Once again, the optimized filter outperformed the results using
the Hamming window apodization. The blurring introduced by
apodization introduces significant error in the concentration es-
timates near the large outer signal. Numerical results are given
in Table I.

IV. POSTPROCESSING OFEXPERIMENTAL DATA

To further demonstrate the effectiveness of the developed
method we tested it on experimental data provided to us
courtesy of the Center for Nuclear Imaging Research at the
University of Alabama at Birmingham. The data was from a

set of -space samples centered around the origin
acquired from an NAA image. This data was used to reconstruct
(interpolate) the image onto a grid, and we used it

(a)

(b)

Fig. 24. (a) Image reconstructed with zeropadding and inverse FFT, (b)
reconstructed image after applyingh .

as a basis for a manually constructed model for the standard
deviation image shown in Fig. 22.

The resulting optimized filter with the Fourier transform mag-
nitude is shown in Fig. 23. We again see the asymmetric be-
havior exhibited in the previous examples. As done in the pre-
vious cases, we show the standard image reconstructed by ze-
ropadding the frequency domain to and taking an
inverse FFT and the image resulting from applying in the
postprocessing. These images are shown in Fig. 24. Notice that
the optimized image does not contain as deep a dark ring near
the large scalp signal. The negative sidelobe has been signif-
icantly suppressed, so that the signal inside the brain is more
uniform as expected.

V. CONCLUSION

The method we have developed here is able to reduce signif-
icantly the interference of a large unwanted signal in a nearby
ROI. It does not require restrictive assumptions about the image
such as having a limited spatial ROS or consisting of homoge-
neous regions. Furthermore, it is not sensitive to the exact loca-
tions of edges or exact knowledge of the local strength of the
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signal and noise. Once a filter has been designed it can be used
for any image with the same requirements for ringing orienta-
tion. There is no need to design a new filter for each image in
a given acquired set or to perform accurate segmentation. This
is particular advantageous in MRSI, where a set of spectral im-
ages of the same object must be reconstructed. The method can
also be adapted to measuring concentration in a region with min-
imum MSE rather than reconstructing a region with minimum
MSE. The computational simplicity of our method is due to the
fact that the filter design process need not be repeated for each
image in an acquired set since it is not particularly sensitive to
small variations in the prior information used to derive the filter.
In addition, the filter can be implemented efficiently by the use
of FFT’s.

An extension is also possible for reconstructing entire brain
images with minimal interference from the scalp signal. This
could be done by designing several filters with different orien-
tations, reconstructing an image for each orientation, and then
selecting each pixel from the image in which the interference
is steered away most from that pixel location. This, of course,
would require several FFT’s but may be more efficient than it-
erative nonlinear restoration methods.
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