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Correspondence 

Adaptive Median Filters: New Algorithms and Results 

H. Hwang and R. A. Haddad 

Abstract-Based on two types of image models corrupted by impulse 
noise, we propose two new algorithms for adaptive median filters. These 
have variable window size for removal of impulses while preserving 
sharpness. The first one, called the ranked-order based adaptive median 
fllter (RAMF), is based on a test for the presence of impulses in the center 
pixel itself followed by the test for the presence of residual impulses in 
the median filter output. The second one, called the impulse size based 
adaptive medianfllter (SAMF), is based on the detection of the size of the 
impulse noise. 

It is shown that the RAMF is superior to the nonlinear mean L ,  
filter in removing positive and negative impulses while simultaneously 
preserving sharpness; the SAMF is superior to Lin's adaptive scheme 
because it is simpler and better performing in removing the high density 
of impulsive noise as well as nonimpulsive noise and in preserving fine 
details. Simulations on standard images confirm that these algorithms are 
superior to standard median filters. 

I. ~NTRODUCTION 

In image processing, images are often corrupted by positive and 
negative impulses stemming from decoding errors or noisy channels. 
Both are easily detected by the eye and degrade the image quality. 
The nonlinear mean filter [2], [3] cannot remove such positive 
and negative impulses simultaneously. The median filter performs 
quite well, but it falters when the probability of impulse noise 
occurrence becomes high. To overcome this situation, we propose 
a new algorithm for adaptive median filters with variable window 
size. This filter is to be robust in removing mixed impulses with high 
probability of occurrence while preserving sharpness. This algorithm, 
called the ranked-order based adaprit*e median jilter (RAMF), is 
based on a two-level test. The first level tests for the presence of 
residual impulses in the median filter output, and the second level 
tests whether the center pixel itself is corrupted by an impulse or not. 

In some image applications, it is frequently desirable to remove 
noise that might be impulsive and/or nonimpulsive, with minimum 
distortion of the original image information. One of the undesirable 
properties of the median filter is that it does not provide suffi- 
cient smoothing of nonimpulsive noise. To overcome this, various 
techniques [I], [4] have been used. 

Recently, Lin and Wilson [SI proposed the median filter with an 
adaptive length based on impulse noise detection. As mentioned 
in 151, the I-D scheme performs poorly for mixed impulse noise. 
A negative impulse noise can be incorrectly detected as positive 
impulse noise. They proposed the 2-D algorithms. For removal of 
such noise, one of them is to remove positive impulse noise and then 
remove negative impulse noise. Another one is to remove positive and 
negative impulse noise simultaneously. Because of high probability 
of false alarm in high density noise, the separate removal of positive 
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and.negative impulse noise was preferred. However, for such an 
algorithm, the false alarm described in the l-D case still exists, 
and the operation becomes complex. In order to overcome these 
problems, we propose another new algorithm for adaptive median 
filters as an extension of Lin's adaptive scheme [5]. Our filter is 
simpler and better performing in removing a high density of mixed 
impulsive noise as well as nonimpulsive noise while preserving fine 
details. This algorithm, called the impulse size based adaptive median 
filter (SAMF), is based on detecting the size of the impulse and then 
adjusting the window length of the median filter. 

In this correspondence, we have proposed two new algorithms 
for adaptive median filters. Our simulations on standard test images 
demonstrate that these filters are simpler and better performing than 
rival algorithms. 

11. FIRST NOISE MODEL: RAMF 

A. Noise Model 
In the first case, we assume that each pixel at ( i .  j ) is corrupted 

by an impulse with probability 1' independent of whether other pixels 
are corrupted or not. The impulse corrupted pixel e , )  takes on the 
minimum pixel value h,,,,,, with probability q, or the maximum pixel 
value s , , , , , ~  with probability 1 - q , ,  when the original pixel s , /  is 
corrupted by a negative or a positive impulse, respectively. Let { x , ~  } 
be the noise corrupted image. Then 

e , ]  with 11 
s , ~  with 1 - 11. 

. I , , ,  = { 
The RAMF algorithm is based on a test for the presence of an impulse 
at the center pixel followed by a test for the detection of a residual 
impulse in the median filter output. 

B .  Two-Level Filter Structure 
In the first noise model, the nonlinear mean filters (21 fail to re- 

move impulses whenever negative impulses are present; the standard 
median filters falter when 1) is large. The following analysis shows 
the ineffectiveness of the median filter in removing a high degree 
of impulse noise. We consider the special case .s,, = 0 inside the 
window T I 7 .  In this case 

= 0 with 1 - 1) 

and 
filter output 

is either \ s t  ,,,, = 0 or 5 , 8  ,,,, . Let r,,, , , /  denote the median 

. I ' , , ~ + , /  = med{.r,+, J+ . } . ( r .  + )  E TI - .  ( 2 )  

denote the number of impulse-corrupted pixels In T T 7  centered Let 
at (/,I). It is shown in [6] that 

where Pr[ . r , r l r , ,  = s,,] = Pr[-Y,J 5 ( I T -  - 1)/2] is given in 
(C.l) in [6]. Note that (3) is a measure of the impulse-removal 
performance of the filter. Our objective is to improve on the fixed 
median by adaptively varying the window size, thereby reducing the 
error measure (3). 
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TABLE I 

OPERATOR, AND THE OVER BAR Is THE SET COMPLEMENT. 
case T- T+ true hypothesis 
( a )  0 O 1 1 1 ~ 2 ~ 3  + H ~ x 3  + H3 

( I ) )  0 negative Hi di H3 
( c )  positive 0 f i z  di HJ 
((1) positive negative H3 

FIRST-LEVEL TRUTH TABLE; hr IS THE EXCLUSIVE-OR 

TABLE I1 
SECOND-LEVEL TRUTH TABLE: IS THE EXCLUSIVE-OR OPERATOR. 

case CL Ir+ true hypothesis 
( a i  Q 0 impossible 
( I ) )  0 negative E1 @ E3 
( r )  positive Q E2 @ E3 
i d )  Dositive iiecative E7 

The RAMF consists of two levels. The first level tests for the 
presence of residual impulses in the median filter output. If the first 
level asserts there is no impulse in the median filter output, then the 
second level tests whether the center pixel itself is corrupted by an 
impulse or not. If the center pixel is decided as Uncorrupted, then we 
leave it as IS without filtering. If not, the output of RAMF is replaced 
by the median filter output at the first level. On the other hand, if 
the first level asserts there is an impulse in the median filter output, 
then we simply increase the window size for the median filter and 
repeat the first-level test. 

Level It-RAMF: For the second level, we define the test statistics 
IT- and IT+ as 

(6) 
n A I'- = .r,, - ,) and 1 -+ = .U,, - x , , , ~ ~  I. 

The hypotheses over a region inside the window are denoted by 

E1 : . I ' , ~  = s ,,,,, I .  E2 : . I ' , ~  = s,,,, ,,., andE:l : ,U,, = s , ~ .  

The truth table for these statistics is shown in Table 11. If d), then the 
RAMF output i s  the center pixel itself; otherwise, the RAMF output 
is the .r,,,,,/ of the first level. 

C. Simulation Results 
The RAMF filter is used on the standard test image, as shown in 

Fig. l(a), of 8 bits per pixel. Fig. I(b) shows the corrupted image 
by mixed impulses with 11 = 0.3 and qe = 0.5 in the first model. 
Fig. l(c) shows the RAMF filtered image with a maximum 5 x 5 
square-shaped window. For comparison, the nonlinear mean L ,  filter 
[2] and the median filter are applied to the same input image. Fig. l(d) 
shows the L ,  (with parameter 11 = 3) filtered image with negative 
impulses removed first. followed by removal of positive impulses. 
The standard median filtered image with a 5 by 5 squared-shaped 
window is shown in Fig. I(e). We conclude that the RAMF is superior 
to the nonlinear mean L,, filter [2] and the standard median filter in 
removing positive and negative impulse noises simultaneously. 

111. SECOND NOISE MODEL: SAMF 

Note that there is a loop in the first level. A termination condition 
for this loop is related to the impulsive noise density 11. In our 
simulations. we found that a maximum window width 11- = 5 is 
adequate for p = 0.3, while TI- = 1 I was needed for a large noise 
density corresponding to 1) = 0.7. 

In the first level, the median filter output . I . , , ,~~/  can be cast into 
three possible disjoint values 

A .  Noise 
In the second model, the noise corrupted pixel is x , ~  = s,, + 

where t i L J  is iid impulsive noise having Laplacian or Cauchy or a 
mixture of Gaussian and Cauchy distributions. This SAMF algorithm 
in this instance detects the width of the impulse and adjusts the 
window accordingly until the noise is eliminated. 

(4) 

where .<,, is one of the uncorrupted pixel values, which range between 
s,,,,,, and s,,,,,,.. 

The specific values of s , , , ~ , ~ .  s ,,,, I ,. are not needed explicitly in the 
hypothesis test to follow. It is also pointed out that the uncorrupted 
pixel value R,, itself can take on these extreme values. So we cannot 
simply declare an impulse of noise present whenever .U,,,,,/ = .581,( l l  

or s,,,,,,. Hence, we need the more sophisticated hypothesis test 
described next. 

Level I-RAMF: We define two test statistics T- and 7; 

( 5 )  
A n 

T- = .r ,,,, - ,rIi ,,,, and T+ = . i ' 7 , z + c /  - .t',,,,,,. 

B. Filter Structure 

This filter for the second noise model is an extension and sim- 
plification of Lin's adaptive algorithm [SI in that it can handle a 
dense mixture of positive and negative impulses. It consists of two 
operations: detection followed by filtering. 

Detection Operation: We define the test statistics for j = 1 + 3 

(7) 
n n 

d+, = S T J - l  - .rh.+, and tl-1 = . t ' ~  - ( J r - 1  

where yk-1 is the median filter output at sample time k -  I .  
Stage 1: Detects impulse of bize I .  

If ((]+I > 1.1 and ( l - ,  > 1.1) or ( d + ,  < - r ~  and ( 1 - 1  < -1 .1)  

we declare one impulse present at location li and eliminate it by 
median filter of size 3. The program then shifts to the next pixel 
location k+ 1. 

Stage 2: Detects impulses of size 2 if there is no impulse of size 
1 in Stage 1. 

where . r , , , , , ,  ( . r l , , l , ,  ) denotes the minimum (maximum) value inside 
the window. With three possible disjoint values for x,,,, we define 
three hypotheses 

The truth table for these statistics is shown in Table I. In case d), 
we proceed to the second level. In cases a), b), and c), we increase the 
window size and repeat the first level. As mentioned earlier, we come 
out of the b o p  either by satisfying the test condition or by effectively 
terminating the looping through a choice of maximum window width 
It-. At this point, the output of the first level is free of impulses so 
long as the test condition is satisfied. 

then declares impulses present at locations A. and k+ 
filters of sizes 

and x+ ,, 
i f  there is no impulse of size 2.  

1, It then eliminates these with 

Program then shifts to pixel at location k+ 2, 

successive 
and 3, respectively, corresponding to pixel location 

Stage 3: Detects impulses of size 

If (d+,) > r:% and t l  - I > I.:$ or ( ( I + : $  < - I '  and (1 - I < - I.:] ) 
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(e) 
Fig. 1. 
filtering noisy image by (c) RAMF, (d) L,, filter [ 2 ] ,  and (e) median filter. 

(a) Original image; (h) noisy image (1) = 0.3, q- = 0.5). Outputs of 

the algorithm detects impulses at locations at k ,  k+ 1, A.+ 2 and 
eliminates these with median filters of sizes 7, 5, and 3, replacing the 
corrupted pixel values by the median-filtered one. The program then 
shifts to the pixel location k+ 3. 

Averaging Filter: If stages ( I ) ,  (21, and (3) fail, we declare no 
impulse present at location A. and call for simple averaging to reduce 
the Gaussian noise in the signal. In this case, the program then shifts 
to examine the pixel at location k+l. Note that impulse noise of size 4 
will not be detected in this 3-stage algorithm. They will pass through 
attenuated only by the averaging filter. The maximum complexity of 
this configuration is set by the highest stage. In the 3-stage algorithm, 
on the order of (7 log 7 + 5 log 5 + 3 log 3) sorting operations 
are needed. The detectors are simple comparators. The looping is 
automatically terminated at the bottom of any particular stage. 

Filterrng Levels: The median filters are stacked depending on the 
size of the detected impulse. For example, if we detected an impulse 
of size 3 at stage 3, the top window is set equal to 7, and the algorithm 
proceeds as follows: 

level I :U:' ' = med{.r-:,.. . . . . rh. .  . . .rc+:l) .  (8) 

The center pixel is replaced by this median and inputted to the 

level 2 :g$yl  = m e d { . t . A - ~ . ~ ~ " . . t ' ~ + ~ . . ~ ~ + ~ . . r ~ + ~ } .  (9) 

Fig. 2. 
Outputs of filtering noisy image by (c) SAMF and (d) Lin filter [SI. 

(a) Original image; (b) noisy image (6 = 0.8, (I = IO, A = R ) .  

Then, for level 3, we use 

level 3 :yi.y2 = med{yyil:,. . r i .+ .~ . . r .k+~} .  (10) 

If no impulse is detected, rather than do no filtering, we use a 
sample mean with censored data using .I'h as the reference point. 
This output gives !)A as sample mean of .rJ E L,, where L ,  = 
{ . r , l d . ~ - c < . r ~  < . r r + r . j €  (k-3.k+3)}.andccorresponds 
to a 30 value. 

2 - 0  Version: For the 2-D algorithm with a cross-shaped window, 
we define the test statistics for k = 1 -+ 3 

n A 

n A (11) 

Based on the 1-D algorithm, the window size is determined in both 
horizontal and vertical directions simultaneously. To reduce edge 
smearing in the diagonal directions, the window size decision for 
45 and 135" directions are added. 

di,+n = . r , . J r ~ - ~  - .r,,,+~ and J L I  = .r,, - y , , , -~  

d,.+A = .r,+k-i. , ,  - .I ',+A,~ and J<.-I  = .r,., - !/,-I,,. 

C .  Simulation Results 
Fig. 2 compares the SAMF with Lin's adaptive filter [ 5 ] .  The test 

The noise consists of a mixture of two pdf's 

f ( . r )  = (1 - f ) q ( . r )  + f h ( . r . )  

image is the same as that shown in Fig. l(a). 

Here, g ( . r )  is AY(0.m2) and h ( . r )  is Cauchy with parameters A. 
Fig. 2(b) shows the noise corrupted image with f = 0.8, D = 10, 
and X = 8. Fig. 2(c) and (d) shows. respectively, the SAMF filtered 
image and the Lin's filtered image. The thresholds T I .  7 2 ,  and r:3 

will depend on 0. A. and 6. These values were varied over the range 
I O  -+ 35 with no perceptible difference in performance. The values 
T I  = TZ = n = 15 were found to provide a reasonable compromise 
between detection of an impulse and a false alarm. This test result 
shows that the SAMF performs better than the Lin's adaptive filter 
in removing a mixture of impulsive and nonimpulsive noises while 
preserving sharpness. 
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We conclude that the SAMF is superior to the median filter 
with adaptive length [5] in two respects: a) simpler and b) better 
performing. 

IV. CONCLUDING REMARKS 
Based on two types of impulse noise corrupted image models, we 

have introduced two new algorithms for adaptive median filter with 
variable window size for removal of high density impulse noises 
while preserving image sharpness: the ranked-order based adaptive 
median filter (RAMF) and the impulse size based adaptive median 
frlter (SAMF). 

The RAMF, based on a two-level test, is simple in its operation and 
removes positive and negative impulse noise simultaneously while 
preserving sharpness better than the nonlinear mean L,, filter [2]. 

The SAMF, based on impulse noise size detection inside a window, 
is simpler than Lin’s adaptive scheme [5 ]  and removes high density 
impulses, smoothes nonimpulsive noise, and preserves details better 
than Lin’s scheme. 

The simulation results also show that the performance of these 
filters are superior to that of the median filter. 
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High-Order Moment Computation of Gray-Level Images 

Bingcheng Li 

Abstract- This correspondence describes an efficient approach to 
calculate geometric moments of a 2-D gray-level image. It is shown both 
theoretically and experimentally that the new method compares favorably 
with previous techniques, especially for high-order moments. 

I. INTRODUCTION 

Two-dimensional moments have been widely used in computer 
vision. Typical examples of applications involving lower order mo- 
ments are pattern recognition [ l], [2], [ 5 ] ,  [6],  [8], edge detection [4], 
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orientation determination [3], [6]. [7 ] ,  and image normalization [3]. 
There have also been recent attempts to use high order geometric 
moments for image analysis [lo], image reconstuction [ l l ] ,  [12], 
pattern recognition [13], and texture classification [21]. Although 
geometric moments have found wide applications, their computation 
still constitutes a challenge, especially for high orders. 

Several fast algorithms have been described for binary images 
[ 141-[17]. Hatamian et al. proposed a IIR filtering-based approach 
to compute geometric moments for gray-level images. Their method 
uses no multiplications, and is well suited for low-order moment 
computations. However, when the moment order is high, it is difficult 
to derive the linear transform between the IIR filter output and the 
geometric moments. Furthermore, the computation of‘ the transform 
as formulated by these authors is not necessarily the most efficient. 

In this correspondence, we propose a new method to compute 
geometric moments of gray-level images. Instead of computing 
geometric moments directly, we first calculate auxiliary moments, 
which correspond to the inner product of the image and a linear 
combination of monomials. The geometric moments can then be com- 
puted by another linear transformation. For computational efficiency, 
the auxiliary moments are selected so that they correspond to the 
output of a IIR filter bank. In order to simplify the derivation of the 
linear transform, we introduce a new generating function that links 
the geometric moments with the IIR filter output. We then show that 
the linear transform B is the product of a series of 0-matrices and 
that it can be implemented by a simple systolic structure. Finally, 
the new method is used to compute 2-D geometric moments, and a 
comparison with other techniques is provided. 

11. FILTERING-BASED COMPrJTATION OF MOMENTS 
In this section, we first prove that the inner product of two functions 

can be converted into a convolution. Then, a vector and matrix 
summation and their convolution are defined, and are used to simplify 
the computation of moments. 

A .  Inner Product and Scalar Convolution 

The inner product of function f ( x )  and d ( . r )  in [O. NI is defined as 

U 

<f.tl>:v = Cf(.(.)fi(.r). (1 )  
., =n 

Proposition I :  The inner product <f. ( I >  is the output at .r = .V 
of a filter d ( . r )  with input f (r  - . r ) ,  that is 

(2) 

where * denotes the convolution. 
The 11th-order geometric moment is defined as 

From Proposition 1, we can convert (3) into 

where < I , , ( . ( . )  = d’. 

(3) 

(4) 
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