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Blind Identification of Multichannel FIR Blurs and
Perfect Image Restoration
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Abstract� Despite its practical importance in image processing
and computer vision, blind blur identification and blind image
restoration have so far been addressed under restrictive assump-
tions such as all-pole stationary image models blurred by zero- or
minimum-phase point-spread functions. Relying upon diversity
(availability of a sufficient number of multiple blurred images),
we develop blind FIR blur identification and order determination
schemes. Apart from a minimal persistence of excitation condition
(also present with nonblind setups), the inaccessible input image
is allowed to be deterministic or random and of unknown color or
distribution. With the blurs satisfying a certain co-primeness con-
dition in addition, we establish existence and uniqueness results
which guarantee that single-input/multiple-output FIR blurred
images can be restored blindly, though perfectly in the absence of
noise, using linear FIR filters. Results of simulations employing
the blind order determination, blind blur identification, and blind
image restoration algorithms are presented. When the SNR is
high, direct image restoration is found to yield better results than
indirect image restoration which employs the estimated blurs. In
low SNR, indirect image restoration performs well while the direct
restoration results vary with the delay but improve with larger
equalizer orders.

Index Terms� Blind blur estimation, blind image restoration,
multichannel image restoration.

I. INTRODUCTION

I N many applications, multiple blurred renditions of a single
image become available while the original image and the

blurs remain unknown. Some of these applications, such as
electron microscopy and imaging through the atmosphere,
require image restoration to remove the effects of the blur
(see [9] and [26], [17]), while others, such as machine vision,
require blur identification for depth-from-defocus estimation
(see, e.g., [3] and [20]). With a priori knowledge of the blurs
or the input and output (cross-) power spectra, there exist many
multichannel image restoration techniques based on different
constraints such as minimum mean-square error restoration
[4], [19], least-squares restoration [5], and iterative constrained
least squares [9], [13]. When an accurate estimate of the input
image is available, or the blurs are known, techniques for range
estimation based on depth-from-defocus techniques are avail-
able [3], [20]. To estimate the blurs and/or the original image
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for these algorithms using traditional single-input single-output
blind techniques (see [22] for a review of such techniques), it is
necessary to employ restrictive assumptions on the image-blur
model such as an all-pole stationary image blurred by zero- or
minimum-phase point-spread functions. Such blind techniques
do not exploit the extra information provided by the diversity
of degraded images.

Research in one-dimensional (1-D) signal processing has
shown that in a single-input multiple-output system it is
possible to use the second-order statistics estimated from the
multichannel output data to identify nonminimum phase FIR
filters [25]. Of interest are [6], [25], and [28], which propose
methods for blind channel identification (the 1-D equivalent of
blur identification) and [8], [24] which propose methods for di-
rect estimation of FIR equalizers. Universally, these algorithms
require that the multiple FIR channels are co-prime. This makes
extension of these ideas to two-dimensional (2-D) signal pro-
cessing especially challenging since in two-dimensions factor
co-primeness (weak co-primeness) and zero co-primeness
(strong co-primeness) are different unlike the 1-D case.

In this paper, we show that when at least three images are
available, it is possible to exploit the properties of single-input
multiple-output image data in order to derive algorithms for
blind blur identification, blind order determination, and blind
image restoration. The blind blur identification algorithm is
based on a relationship between outputs, also observed in [28]
for 1-D signals, and is derived in both the spatial and frequency
domains. The blurs are found either as the eigenvector corre-
sponding to the minimum eigenvalue of a particular data matrix,
or, through a least-squares solution. Factor co-primeness of the
blurs and a mild persistence-of-excitation condition on the input
image are shown to be sufficient conditions for uniqueness of
the solution. Blind order determination is accomplished by
examining the relationship between the rank and the dimension
of a particular data matrix. For image restoration, the existence
and uniqueness of a set of FIR restoration filters is character-
ized. This description is used for blind image restoration in
an indirect and a direct method. The indirect method requires
first finding the blurs and then employs (perhaps regularized)
inverses to find the restoration filters. The direct method finds
these restoration filters directly from the output data under a
stronger persistence-of-excitation condition on the input and
again factor co-primeness of the blurs.

Compared to other works which employ the single-input
single-output (SISO) image-blur model [16], our approach
fully uses the information from the diversity of output channels.
Other deterministic SISO blind approaches are typically itera-
tive, requiring such constraints as positivity, and/or piecewise
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Fig. 1. Single-input multiple-output image-blur model.

smoothness on the input image or the blur function [1], [17],
[19]. Additionally, convergence is not guaranteed in the itera-
tive methods since the proposed objective functions typically
contain a number of minima. In contrast, the novel determin-
istic approach in this paper allows the original image to be
nonstationary with unknown color or distribution eliminating
restrictive assumptions on the input image [22]. Existence of
multichannel deconvolution operators for continuous space was
addressed in [2] without consideration of the blind problem and
neglecting the important practical case of discrete-index FIR
blurs and FIR restoration filters (which are guaranteed to be
stable) as addressed in this work. The cyclostationary viewpoint
of [7] though based on a similar blind 1-D algorithm [6], did
not specify identifiability and perfect restoration conditions
developed herein.

The organization of this paper is as follows. In Section II,
we present the 2-D single-input multiple-output model assumed
throughout this work and use this to clearly define the problem
statement. In Section III, we show the conditions for existence
and uniqueness of 2-D perfect restoration filters. In Section IV,
we derive a procedure for blindly estimating the maximum order
of the blurs and two procedures for blindly estimating the blurs.
Once the blurs have been identified, we show in Section V how
these blurs can be used in image restoration. Alternatively, in
Section VI we use the existence and uniqueness results from
Section III to derive an approach for either estimating two sets
of restoration filters corresponding to different lags, or all pos-
sible sets of restoration filters simultaneously from the output
data. Existence and uniqueness of these solutions are appro-
priately characterized. We also explore the optimality of the
direct restoration filters in the presence of noise. Section VII
shows simulations that demonstrate our blind order determi-

nation, blind blur identification, and direct and indirect blind
restoration techniques. Simulations are presented in the pres-
ence of additive white Gaussian noise, addressing other ques-
tions such as the restoration quality when different delays and
orders of restoration filters are chosen. Finally, Section VIII
summarizes our developments with some concluding remarks.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider the 2-D single-input multiple-output linear spa-
tially invariant (LSI) system in Fig. 1. Such an imaging
system could result from multiple cameras, multiple focuses
of a single camera, or acquisition of images from a single
camera through a changing medium. The input to this system
is (as1) an unknown image with finite support

. We as-
sume the area outside the image to be unknown. This image
is distorted by (as2) unknown finite impulse response
(FIR) blurs with maximum support

with support less than that of the
image, e.g., . A finite support blur is
a reasonable assumptions since blurs are at most approximately
bandlimited in practice.

The 2-D convolution of the input and the th blur
is (as3) degraded with the additive white Gaussian

noise (AWGN) field to produce the th output image
(see [22] for justification of the AWGN assumption).

It is assumed that (as4) the noise field in each channel is un-
correlated with the noise fields from the other channels. Both

and have support
.

Let prime denote transpose and bold lower (upper)
case be used for vectors (matrices). Define the
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Fig. 2. Multiple-input single-output restoration model.

-channel vector of unknown blurs as
. Similarly, define the noise vector

and the vector of
observations . Using
these definitions we express the input-output relationship in
Fig. 1 in vector convolution form

(1)

From the vector with
we are interested in finding a order

2-D filter bank that satisfies the perfect restoration condition.
This condition requires that the vector restoration
filter, ,
when applied to the observations obtained from
(1) in the absence of noise, yields the exact input to within
a scale and shift ambiguity (see also Fig. 2), i.e., for

(2)

Specifically, in this paper we are concerned with the fol-
lowing problems:

1) order determination: given for
find the order

for the blur(s) of maximum support;
2) blur identification: given for

and the
order , in the absence of noise, find

;
3) indirect restoration: given

, find
;

4) direct restoration: given for
find

for .
Recall that in blind problems it is only possible to recover the

output within a shift and a scale (assumed unity without

loss of generality). Due to this shift ambiguity, the knowledge of
a restoration filter of any delay is sufficient for blind restoration.
In Section VI, we will see how to exploit the uncertainty of this
shift to solve simultaneously for restoration filters of different
delays after establishing conditions for existence and unique-
ness of such filters in this section. Although (2) implies causal
restoration filters, it will turn out in Section VI that noncausal
shifts play a major role in the quality of restoration. Note that
by employing FIR restoration filters we obviate stability issues
because stability of FIR filters is guaranteed.

III. EXISTENCE AND UNIQUENESS OF PERFECT RESTORATION

FILTERS

To facilitate the derivation of restoration filters, we formulate
the input-output relationships in (1) and (2) in matrix form using
a lexicographic ordering (e.g., [11, p. 23]. For define
the matrix with all-zero
vectors, , as

...
...

...
...

...
...

. . .
...

(3)

and then the
block matrix with all-zero matrices

as

...
...

...
...

...
...

. . .
...

(4)
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Now define the data vector

(5)

and the input vector

(6)

For , using (6) and (5), define the
block matrix and the

block matrix as

...
...

... (7)

...
...

...

(8)

Using (7), define the
block matrix as

(9)

Using (8), and assuming that for
, define the

block matrix as

(10)

Now with , and the definitions
in (4), (9), and (10) the noise-free input-output relation in (1) is
given by (see also Fig. 2)

(11)

Recall that
denotes the vector restoration filter corresponding

to the shift , and let the
vector have unity in its
entry and zero elsewhere. Using these definitions and
(9) we express the input-output relationship in (2) for

as

(12)

Substituting in (12) from (11), we obtain
; hence, for perfect restoration

it suffices to have

(13)

which merely expresses the requirement that the sum of the con-
volutions of and equals a delta function
with the appropriate shift . Given and a shift ,

the vector restoration filter that satisfies (13) is the appro-
priate column of the (pseudo)inverse of . This elucidates the
fact that the restoration filters corresponding to two different de-
lays and with are not shifts of
one another. The existence and uniqueness of solutions to (13)
depend on the full column rank of which will in turn depend
on the co-primeness of the transfer functions
of the blurs . In 2-D, co-primeness comes in
two distinct flavors as detailed in the following definition (see
e.g., [12]):

Definition 1: Consider the set of 2-D FIR transfer
functions . They are strongly (or
zero) co-prime iff there does not exist a zero
common to all transfer functions, i.e., there does not exist

. They are weakly
(or factor) co-prime iff there does not exist a factor
common to all transfer functions, i.e., there does not exist

.
Equipped with the notion of strong co-primeness, the rank

properties of in (13) can be characterized as follows.
Theorem 1: Let , and as in (3) and (4),

respectively. It then holds that
if and only if are strongly co-prime

and .
Proof: If is full row rank, it follows that its submatrix

is also full row rank, i.e., . In
addition, which in the -domain implies

(14)

If were not strongly co-prime, there
should exist to zero the LHS of (14), leading to a
contradiction.

If are strongly co-prime, it follows that for
each (fixed) nonzero are co-prime
1-D polynomials in . With , the latter implies
that the polynomial matrix for all as

...
. . .

. . .
. . .

...
...

. . .
...

(15)

is full row rank for each , i.e.,
for . But the latter, together with the full row rank

of , imply that the multivariate system with matrix impulse
response is irreducible [12], or equivalently that the
block Toeplitz matrix has full row-rank.

It will be shown in Theorem 2 that strong co-primeness is
instrumental for the existence and uniqueness of FIR restoration
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filters. Unfortunately, for , strong (or zero) co-primeness
of two 2-D polynomials is an event of measure zero, since two
lines on the plane intersect almost surely. However for

, 2-D polynomials are almost surely zero co-prime since
the event of three or more lines passing through the same point
on the plane is an event of measure zero. The practical
implication of strong co-primeness is that we need at least three
different observations to find FIR restoration filters capable of
perfect reconstruction. Note that the blur zeros are not an issue
provided co-primeness holds true.

The full rank requirement of is not as stringent as
strong-coprimeness. It implies that the 1-D
polynomials corresponding to the first column of are
co-prime. However, even if they are not, it suffices to have at
least one column, say the , where co-primeness holds. In this
case, will be full row rank and (14) will hold with the RHS

instead of 1.
Assuming that is full column rank (as characterized by

Theorem 1), we establish the existence and uniqueness of so-
lutions to (13) in the next Theorem.

Theorem 2: Suppose that

(16)

and that in (4) has full row rank, i.e.,

(17)

Then for a given shift , the solution of (13) exists.
Uniqueness is guaranteed if (16) holds as an equality, or, if the
minimum norm solution is obtained in (13).

Proof: Equation (16) implies that has more columns
than rows, while the rank condition implies that is underde-
termined; thus is guaranteed to be in the range space of
and a solution exists. When (16) is satisfied with equality, is
square and nonsingular, thus the solution is unique. When (16)
is satisfied with inequality, we choose the minimum norm solu-
tion which is guaranteed to be unique.

The minimum number of blurred images required to satisfy
(16) is as might be expected from our discussion
on strong co-primeness. This can occur when, for example, we
take , then the equality in (16) is satisfied for a
restoration filter with minimum support

(18)

where denotes the greatest integer less than . If four blurred
images are available, , then we can satisfy (16) with

and in this case the restoration
filters can have an order less than that of the largest blur. Note
that FIR least squares solutions of (13) exist even in the SISO
case, but they are only approximate (in the least-squares sense).
Diversity (giving rise to SIMO models) allows for perfect FIR

restoration filters of multiple FIR blurs, in contrast to the SISO
case where an FIR blur can only be inverted perfectly with an
IIR restoration filter.

The importance of diversity in this formulation is transparent
if we note that (16) is not satisfied for any positive parameters

with . In other words, SISO blind blur
identification is impossible in this general set-up (note that we
have not assumed that is all-pole).

Having established the uniqueness of FIR restoration filters
for given , we wish to explore whether or can be ob-
tained from output only data. We will need to specify the class
of inputs which allow such a blind identification (clearly, if e.g.,

for all it is impossible to find from
). We will assume that (as5) the input image satisfies a

mild persistence-of-excitation condition (also needed for non-
blind setups). We express this condition in terms of the block
input matrix in (10), as follows:

(19)

Relying upon (13)�(19) we establish the following lemma for
the matrix in (11).

Lemma 1: Assuming that (16), (17), and (19) are satisfied,
and that the image size is large enough to satisfy

(20)

it follows that

(21)

Proof: From (19) and (20) we have that
, and from (17) that

; hence, from (11)
, by Sylvester�s

rank inequality.
Note that (19) requires the original image to have frequen-

cies in its spectrum, and (20) is easily met in practice since
. Lemma 1 allows us to infer

properties of based on the matrix which contains
only the observed images. In the next sections, the rank proper-
ties of in (21) will be used to derive order determina-
tion, blur identification, and image restoration algorithms from
output-only data.

IV. BLIND ORDER DETERMINATION AND BLUR IDENTIFICATION

The identification and restoration algorithms de-
scribed in later sections require the maximum order

of the blurs. For some
blurs, such as those due to motion or defocus, knowing the
order is sufficient for blur identification, simply
because the underlying impulse responses have positive coef-
ficients of equal amplitude (see, e.g., [3]). For general blurs,
though, the coefficients themselves are also necessary for blur
identification and restoration.
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Consider the ratio of the Fourier-domain outputs of the
and the channels, , of the system of Fig. 1,
in the absence of noise

(22)

where for the second equality we excluded frequencies
for which . Cross-multiplying in (22) we obtain
the relationship

(23)

which does not depend on the input image . Using the
FIR nature of the blurs we write (23) as

(24)

Inverting (24), we obtain in the spatial domain

(25)

Concatenating equations like (24) [or (25)] for different
[or ] pairs we can form systems of linear

equations and solve for the blurs [or ] and [or
] from output only data. A similar result was derived by

[28] in the time domain for the 1-D case. It is apparent that
this method is valid only if the and blurs are factor
co-prime, otherwise we could cancel this factor in (23), and
we would identify the reduced polynomials. Pairwise factor
co-primeness may seem somewhat restrictive; however, we will
see how by simultaneously considering all combinations of

with , we can find the coefficients
of the blurs with the relaxed requirement that the entire set
of all blurs is factor co-prime. By cancelling the unknown
image in (23) we made no assumptions other than
(as6) persistence-of-excitation, i.e., for enough
frequencies. Thus, with this approach we do not require any
deterministic or random characteristics of (e.g.,
whiteness).

Let us now focus on the simultaneous solution of (25) with
all possible pairs . Define the
vector

(26)
and correspondingly the vector

(27)

The 2-D convolution of the image with
can be represented in matrix form as

...
...

...
...

...

...
...

...

...

...

(28)

where has dimensions
. Based on (28), the cross relation in (25) can be written as

(29)

For , there are distinct
pairs. Upon stacking equations like (29) for all these
pairs, we find

(30)

where

...
... (31)

and for

...
. . .

...

...
...

. . .
...

...
(32)

Order determination and blur identification depend on the
rank properties of matrix in (30). In turn,
depends on persistence-of-excitation of the image and
co-primeness of the blurs . To clarify the
dependence, we first note that in (28) is a special form of

in (9), if: (i) we set , and (ii) re-
tain only the th entry of the and vectors in
(4), (5), (9), which also corresponds to having in (4),
(5)�(8). Thus, we can factor where as
in (3), and as in (10) with . The
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matrix in (29) can also be
factored as

(33)

where is and
each of is .

Assuming that (as 7) (19) is satisfied with
, implies that in (33) is full column rank. Thus, under

appropriate p.e. conditions on the rank properties of
in (30) depend on those of

(34)

where has the same structure as in (31) and (32)
but with replacing .

If the blur orders are unknown but upper bounds,
are available, (30) and (34) can be

written as

(35)

where is defined as with zeros padded in the entries with
arguments and . With regards
to (35), the following Lemma determines .

Lemma 2: Suppose are factor co-prime as
in Definition 1, and . It then holds that

(36)

Proof: See Appendix A.
The previous Lemma provides an interesting relationship be-

tween the rank of , the true order , and an esti-
mated upper bound on the order . Unfortunately, (36)
is not directly useful in the blind scenario because the blurs that
compose are in principle unknown. To eliminate this
problem we use factor co-primeness of , and
persistence-of-excitation of the input image to estab-
lish a similar relationship based on the rank of , which
is composed of only the observed images:

Theorem 3: Let be factor co-prime,
satisfy (19) with order

satisfy (16) with , and
be large enough to satisfy

It then holds that

(37)

which for and , yields

(38)

and guarantees uniqueness of the solution in (30).
Proof: Follows easily from Lemma 2 and (33). .

In contrast to matrix in Lemma 1, rank properties of
in Theorem 3 rely on a weaker form of co-primeness,

namely, factor co-primeness. Clearly, factor co-primeness im-
plies zero co-primeness but the converse is not always true; e.g.,

are factor
co-prime but they have common zeros at . With

blurred images it is almost sure to have zero co-prime-
ness and thus guarantee 2-D FIR inverses, but as far as order
and blur identification, Theorem 3 asserts that it is possible even
with images provided that they are factor co-prime.

The equality in (37) suggests that by employing two
sets of upper bounds on namely and

, we can use and to
solve the two equations like (37) simultaneously for the true
order . Because the dimensionality of is

,
which is proportional to , for larger an alter-
native method may be desirable for estimating the order. In
fact, if zero co-primeness holds, the equality in (21) sug-
gests an order determination approach that depends on the

matrix ,
from Lemma 1 in which the rows do not depend on .

Suppose and are chosen such that
(19) and (17) are satisfied. Let

It then follows from (19)
that

(39)

(40)

(41)

Solving for from (39) and (40) we obtain

(42)

and similarly using (40) and (41) it follows that:

(43)

In either order determination scheme, in the presense of noise,
we use the number of (effectively) nonzero singular values to
estimate the rank.

After estimating the true order , with the conditions
of Theorem 3 satisfied, (38) motivates us to construct
and solve for the vector of blurs in (30), since the solution
is unique. As in all blind problems, the solution to (38) yields
the blurs to within a scale of the true blurs. It should be em-
phasized here that since is a tall matrix, the dimension
of involved in the SVD is

which does not depend on the image
size. When the multiplication of becomes pro-
hibitive, other solution methods may be desirable. One alterna-
tive is an adaptive solution of (30), employing the recursive least
squares algorithm or the least mean square algorithm, both of
which would alleviate the memory requirement of the SVD and
also may be more robust in noise and spatially varying blurs
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(see [10] for a discussion of adaptive solutions of (30) for the
1-D case). Another more approximate alternative is to process
blocks of the output images in parallel and then to average the
results.

In lieu of solving (30) for the blurs, we could form a system
of equations from (24) using the output images in the frequency
domain. This may be desirable when obtaining an approximate
solution because we can consider only �significant frequen-
cies,� i.e., those for which has sufficient energy. It
is not difficult to see that (24) is guaranteed to have a unique
solution by the same conditions as Theorem 3. In fact, it is
also computationally attractive when need to be
evaluated only at the 2-D FFT grid.1

When image restoration is the ultimate goal, it is of interest
to use the blurs in finding FIR restoration filters. In the next sec-
tion, we present two approaches for deriving restoration filters
using the estimated blurs.

V. INDIRECT BLIND RESTORATION

With and available, one
may either solve (13) or adopt the multichannel Wiener solu-
tion [4] to obtain a set of restoration filters. Alternatively, we
may choose one of the constrained least-squares approaches in
[9] or [13], with the constraint based on some visual criterion.
The approach in [9] adjusts the restoration based on a subjective
evaluation of the restoration at each restoration step, while the
approach in [13] uses the visibility function [14] and various
weighted norms in a similar iterative restoration approach. If
some knowledge of the input and output- (cross-) power spectra
are available and the noise spectrum is known, the Wiener so-
lution may be obtained as in [4]. The Wiener inverse trades off
perfect blur removal with SNR improvement. In this section we
develop two general solutions to (12): 1) perfect restoration (PR)
filters for blur removal in the absence of noise and 2) approxi-
mate Wiener restoration filters for performance improvement in
noise.

The general solution to (12) for a delay and order
is given by

- (44)

which is the minimum-norm perfect restoration (MN-PR) solu-
tion because is a fat matrix in general. To find an approx-
imate Wiener solution or linear minimum mean-square error
(LMMSE) solution, consider the multichannel Wiener solution
with delay of order and delay

(45)

where is the autocorrelation of
the block 2-D Hankel form of the input image and likewise

is the autocorrelation of the block
2-D Hankel form of the AWGN field in (1) with

defined like in (9). Using the whiteness of

1This may be impossible if the input S(! ; ! ) has zeros at the unit bi-circle
and interpolation to obtain a finer grid will be necessary.

the noise field, and assuming that the input image is also white,
i.e., and , we can rewrite (45) as

(46)

The whiteness of is employed here, in order to give
mean-square error optimality to the restoration filter in (46). Al-
ternatively, (46) or its modifications resulting when one scales

by some constant can be viewed as a regularized LS so-
lution.

In the noise-free case, (46) and (44) are equivalent, and for
any given delay and order restoration filter ,
which satisfies (25), will yield perfect restoration. When noise
is present, in (46) is used to condition the inverse.
Unlike the noise-free case, in the noisy case the quality of the
restoration may depend on choice of and as
will be illustrated in Section VII.

VI. DIRECT BLIND RESTORATION

Multichannel blind image restoration schemes call for image
restoration based solely on the degraded images. The indirect
methods in Section V required two matrix inversions (SVDs),
thereby increasing complexity. In this section, we obviate the
need for blur identification when image restoration is the ulti-
mate goal by presenting two approaches for estimation of the
restoration filters directly from the data. In the first subsec-
tion we derive a procedure for estimating PR filters of two dif-
ferent delays simultaneously. In the second subsection we con-
sider derivation of all possible delay restoration filters simul-
taneously. The third subsection considers the performance of
restoration filters in the presence of AWGN.

A. Single-Lag Restoration Filters

Consider the ratio of the outputs in the Fourier domain of
the restoration system in Fig. 2 for the and delays
(assume temporarily that are obtained
in the absence of noise)

(47)

Cross multiplying in (22) yields the cross-relation

(48)

Inverting (48) we obtain, in the spatial domain

(49)
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for and
, where we recall that

has support over
. With either (48) or (49) we can find a pair of restoration

filters from output-only data. It should be clear that because we
cancel , we are considering only such that

, thus we do not require any deterministic or
random characteristics of . To facilitate development
of (49) in matrix form, we use standard MATLAB notation2 and
let the matrix be defined as

(50)

Next, write the matrix form of (49) with matrix corresponding
to as

(51)

and that corresponding to as

(52)

With definitions (50)�(52), for
, we rewrite (49) as

(53)

From (53) we wish to solve for the and the
lag restoration filters simultaneously, using only shifts of the
output data. Though we can write (53) more generally for de-
lays and , as established below, the delays
and lead to uniqueness.

2In MATLAB, ifX is a matrix thenX(a; b) is the element at the ath row and
the bth column. Then,X(a : c; b : d) is the submatrix of matrixX defined by
the a through c rows and the b through d columns ofX. AlsoX(:; b) denotes
the bth column of X .

Theorem 4: Suppose that: 1) obeys
the noise free SIMO model (1) with the parameters

satisfying

(54)

and (16) as an equality; 2) satisfies (19) with
; and, 3) the blurs satisfy (17).

Then, the nullity of matrix is 1 and the restora-
tion filter pair can be uniquely identified within a
scale by solving (53) with and .

Proof: See Appendix B.
Provided the conditions in Theorem 4 are satisfied, we may

find a pair of vector restoration filters from output only data.
The requirements in Theorem 4, though more strict than the
identifiability conditions of Theorem 3 are still quite mild. For
instance, it is not unreasonable to expect the image size to sat-
isfy (54) since typically . We also re-
quire a stronger persistence-of-excitation condition on the input,
namely that the input has at least
frequencies at which in (47). Availability of two
restoration filters allows us to average the results by aligning the
restoration filter outputs

(55)

With regards to (55), one may wonder about the possibility of
finding and averaging the results of all possible restoration fil-
ters. We explore this possibility in the next subsection.

B. Multiple-Lag Restoration Filters

By considering equations of the form of (53) for
we can solve for all possible restora-

tion filters simultaneously as shown in (56) at the bottom of the
page. Existence and uniqueness of solutions of (56) is estab-
lished in Theorem 5.

...
...

...
. . .

...
...

...

...
...

...
...

...
...

...

...
...

...
. . .

...
...

...

...

...

...

(56)
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Fig. 3. Multiple-lag restoration filters.

Theorem 5: Suppose that: 1) obeys the noise-free
SIMO model (1), (54), and with (16) and (17) satisfied as equal-
ities; 2) satisfies (19) with

, and (ii) the blurs are strongly co-prime. Then, the
corresponding to all shifts

can be identified uniquely by solving (56).
Proof: See Appendix C.

The application of this bank of restoration filters to
is shown in Fig. 3. We obtain an estimate of the input image by
averaging the outputs of the system in Fig. 3, as shown in (57)
at the bottom of the page.

C. Multiple-Restoration Filters�Noise Effects

Thus far we have derived PR filters from output data ac-
quired in the absence of noise. In this subsection we show that
these filters, when derived from noisy output data, minimize the
sample variance of an error term inherent in the deterministic
least-squares approach of this paper. We also consider choice of
order or delay of PR filters to minimize the MSE of the input
estimate.

In the presence of noise, (11) becomes

(58)

and the restored image for a given delay is given by

(59)

We seek a filter bank which satisfies (13), and hence is
PR, while at the same time minimizes the noise power at the
restoration filter output. The latter is given by ,
where . Using (13) in (59) and defining

, the wanted filter is found as

(60)

If is white, , and (60) shows that
minimizes the norm . In other words, the minimum norm
solution in (44) minimizes [according to (60)] the noise power
at the restoration filter output independent of the input SNR so

(57)
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Fig. 4. Undistorted rotunda image used for simulations.

long as the input noise is white. If is colored and
is known, (44) should be written by weighting accordingly

(61)

If the blurs are unavailable, we have to consider noise effects to
our direct solution in (53). In choosing the minimum-norm solu-
tion to (53) it is apparent that are the vectors that minimize
the following criterion:

(62)

Alternatively, we may solve (56) for PR filters of all delays.
In this case, by taking the minimum-norm solution to (56) we
minimize the following criterion:

(63)

To summarize, in the presence of noise, the minimum norm so-
lution to (53) or (56) minimizes the deterministic error criterion
in (62) or (63), respectively.

As mentioned in Section V, in the presence of noise,
the shift and order may affect the
quality of the restoration. To find some optimality in

our estimate, we assume that the noise is colored with
and look for the

best PR filter that minimizes the mean-squared error. It should
be clear that the best PR filter with respect to delay or order is
the of

(64)

The joint optimization follows similarly. In matrix notation, in
(64), we are interested in the vector which minimizes the norm

weighted by the multichannel noise correlation
matrix, for either delay or order. A similar result is available for
the 1-D case [8].

Having established the optimality of our restoration filters in
the presence of noise, we conclude our theoretical development.
We proceed to the simulations section to examine the perfor-
mance of the algorithms from Sections IV, V, and VI in the pres-
ence of noise.

VII. SIMULATIONS

In this section we use simulations to provide examples of the
results that may be expected from the algorithms presented in
Sections IV and V. These experiments employ the pixel
image of Thomas Jefferson�s Rotunda at the University of Vir-
ginia, shown in Fig. 4.
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Fig. 5. Reference image degraded by (a) h (l ; l ) and (b) h (l ; l ).

A. Order Determination Experiment

Convolving the reference image in Fig. 4 with the blurs

(65)

we created the two images shown in Fig. 5. The blurs were nor-
malized before convolution.

First we consider the noise-free case. Following the pro-
cedure outlined in Section IV, we choose two sets of upper
bounds on the restoration filters that satisfy (19) and (17):

and assuming that an
upper bound on the order of the blurs are available from some a
priori knowledge about the imaging system. Next we form the
matrices , , and and find their ranks

, and , respectively. Finally, we plug in to (42) and (43)
to find that indeed .

Next we add 30 dB white Gaussian noise (AWGN) to each of
the degraded images. In this case we resort to estimating the rank
of . and from the number of near-zero
singular values. Unfortunately, there was not a perceivable dif-
ference in the singular values to accurately estimate. We con-
clude in this case that it may be better to estimate the blurs di-
rectly using the upper bound . A statistical approach to
select thresholds constitutes an interesting research direction.

B. Blur Identification Experiment

In this section we perform blur identification on four de-
graded renditions of the image in Fig. 4. We consider experi-
ments with a set of low order blurs. During each exper-
iment we added AWGN at SNR defined as: .
We estimated the variance of the degraded image in the
usual way using the sample variance. As a preliminary test,
we constructed for this set of blurs and verified that they
are indeed co-prime. To visualize, we display the magnitude of
the Fouier spectra of the reference image in Fig. 4 and blurs

and in (66) in Fig. 6. Note that even though

Fig. 6. Frequency domain plots of (a) Rotunda reference image, (b) h (l ; l ),
and (c) h (l ; l ).

the blurs are both lowpass they still are relatively co-prime with
each other and with the image as well.

Now consider four images degraded by the following order
blurs (normalized for convenience):

(66)
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Fig. 7. The first channel of the order (2; 2) degraded images with SNR (a)1 dB, (b) 50 dB, (c) 30 dB, and (d) 10 db.

Fig. 8. Restoration of the order (2;2) degraded images using the MN-PR approach with delay (0; 0) for SNR (a)1 dB, (b) 50 dB, (c) 30 dB, and (d) 10 db.

We add noise at dB, 50 dB, 30 dB, or 10 dB. Then we form
as in (30) and find the minimum-norm solution in (30).

The output from the first channel is shown in Fig. 7 for each
of these simulations. For simplicity we show the resulting blur
estimates for only the first channel only in (67). Due
to the scale ambiguity, the estimated blurs were normalized for
comparison purposes.

(67)

A useful means of comparing these blur estimates is to use the
normalized mean squared-error for the th blur defined as

(68)

where is the true blur and is the estimated
blur. This is the error in just one Monte Carlo simulation thus the
true value will vary from simulation to simulation. The NMSE
for all the blurs at each noise level is shown in Table I.

TABLE I
NMSE FOR ORDER (2;2) BLURS

The estimate for the noise-free case is exact, as we would
expect from the deterministic formulation of the problem. Not
surprisingly, the noise adversely affected the channel estimates,
particularly in the 10 dB, since we ignored the presence of noise
in the problem formulation. The estimates could be improved by
using larger images or by acquiring additional images degraded
by co-prime blurs.

C. Indirect Blind Image Restoration

Using the order blurs estimated in the last experiment,
we perform image restoration using the MN-PR restoration
filter in (44) and the LMMSE restoration filter in (46). To
illustrate that restoration quality will vary with the delay, we
fix and vary the delay . Figs. 8
and 9 show restoration for the delay and the delay
for the MN-PR filter. Figs. 10 and 11 show restoration for the

delay and the delay for the LMMSE filter. Figure
12 shows restoration for the delay using a single-channel
LMMSE restoration and averaging the results. In each case for

dB the estimate is perfect, as expected. For dB,
results vary slightly with the best performance in Fig. 10(b) and
the worst in Fig. 11(b), demonstrating the effect of the delay.
Interestingly, despite the fact that the error in the blurs of under

Authorized licensed use limited to: Peking University. Downloaded on April 8, 2009 at 03:23 from IEEE Xplore.  Restrictions apply.



1890 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 11, NOVEMBER 2000

Fig. 9. Restoration of the order (2; 2) degraded images using the MN-PR approach with delay (3; 4) for (a)1 dB, (b) 50 dB, (c) 30 dB, and (d) 10 db.

Fig. 10. Restoration of the order (2;2) degraded images using the LMMSE approach with delay (0; 0) for (a)1 dB, (b) 50 dB, (c) 30 dB, and (d) 10 db.

Fig. 11. Restoration of the order (2;2) degraded images using the LMMSE approach with delay (3;4) for (a)1 dB, (b) 50 dB, (c) 30 dB, and (d) 10 db.

Fig. 12. Restoration of the order (2;2) degraded images using the single channel LMMSE approach (averaged across four channels) with delay (0;0) for (a)1
dB, (b) 50 dB, (c) 30 dB, and (d) 10 db.

5% for dB, noise amplification overwhelms the
restoration process. In the last case of dB, because
of the poor estimate of the blurs, we achieve the expected
poor performance. Note that compared with the single channel
restorations in Fig. 12, the multichannel restorations retain the
sharp features of the image at higher SNR while loosing out
a low SNR due to noise enhancement. Note that computation
of the multchannel restoration filters requires roughly

more computations than computing seperate single channel
restoration filters.

D. Direct Blind Restoration

In this experiment we demonstrate the single-lag direct
blind restoration algorithm described in Section VI-A on the
images in Fig. 6. Recall that the approach allows us to derive
the and the lag restoration filters
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Fig. 13. Restoration of the order (2; 2) degraded images using the single-lag direct blind restoration approach with (K ;K ) = (L � 1; L � 1) with SNR
(a)1 dB, (b) 50 dB, (c) 30 dB, and (d) 10 db.

Fig. 14. Restoration of the SNR = 30 dB (2;2) degraded images using order (a) (1;1), (b) (2;2), (c) (3;3), (d) (4; 4), (e) (5; 5), (f) (6; 6), and (g) (7; 7)
restoration filters.

Fig. 15. Restoration of the SNR = 10 dB (2;2) degraded images using order (a) (1;1), (b) (2;2), (c) (3;3), (d) (4;4), (e) (5;5), (f) (6;6), and (g) (7; 7)
restoration filters.

Fig. 16. Restoration of the SNR = 0 dB (2;2) degraded images using order (a) (1; 1), (b) (2;2), (c) (3; 3), (d) (4;4), (e) (5; 5), (f) (6; 6), and (g) (7; 7)
restoration filters.

directly from the degraded images. We then use the averaging
approach in (55) to sum the estimates of the original image.
Fig. 13 shows the results of applying the direct blind restoration
algorithm with to the order degraded
images in Fig. 7 We observe noise amplification as the noise
increases in the degraded images. This results from the perfect
restoration criterion in which we excluded the presence of noise
when developing an approach to deconvolve from

.
One possible approach to improve the visual quality of the re-

stored image is to find restoration filters with nonminimum order
(recall that satisfies (16) with inequality). Using the
direct blind restoration approach as before, we consider restora-
tion using the order blurred images in Fig. 7 but with more
severe noise.

For each SNR we applied the single-lag direct blind restora-
tion algorithm to the degraded images for seven different
restoration filter orders . Results are

shown in Fig. 14 for dB, Fig. 15 for the
dB, and in Fig. 16 for dB. In each of these cases
we observe that restoration with the smallest order restoration
filter is severely impaired by noise amplification. Subsequently
larger orders of restoration filters seem to have a noise aver-
aging property that the lower order filters lack. This robustness
appears to come at the expense of deblurring. A general rule
would be to use the minimum lag restoration filters for cases
where little noise is apparent and to use greater than minimum
lag restoration filters for noisy images. Future work should
include a more detailed analysis of the choice of restoration
filter order.

Comparing the results from Figs. 14 and 15, we see that di-
rect blind restoration with nonminimum order restoration filters
compares favorably with the indirect approaches that employ
blur identification. Further work is necessary to characterize the
statistical properties of the direct blind restorations as well as to
quantify order selection.
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