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ABSTRACT 

We observed that there arc certain fundarnentd concerns 
coninionly exist in some state-of-the-art switching-based 
median filters: (i) fixed tlircsliolding for tlie pre-assumed 
noise density, (ii) t,lie noise decision accuracy at, high density 
impulse noise, and (iii) the filtering sclicrrie adopted in re- 
sponse to pixel characteristic type identified. In this papor, 
we propose a novel no i se  adapt ive  sof t -switching m e d i a n  
(NASM) filter to effectively address the above-mentioned 
issues antl acliieve much improved filtering performance in 
terms of ef f i c iency  in removing iinpiilse noise and robust- 
ness against noise density variations. Experimental resiilts 
also reveal that the performance of our NASM filter is fairly 
close to that of ideal-switdiing Incdiari filter. 

1. INTRODUCTION 

Standard median (SM) filter was initially introdiicetl to elirn- 
inate irnpiilse noise with reasonably good performancc achie- 
ved. Since then, it has been intcnsivcly stiidipd (e.g., [1],[2]) 
arid extended to promising approaches siicli as wjeightrd m e -  
d ian  (VI”)[3] and center uiezghted i r ~ c d i a n  (CWhl)[4] filters. 
Applying any median filtering to t,lie entire image would 
inevitably remove some detailed infornmt,ion of the image. 
Ideally, nicdian filtering should be only applied to corrupt,etl 
pixels while leaving those uncorriiptfcd oncs intact. Tliere- 
fore, a detection process for separating the iincorrupt,c:tl pix- 
els from the corrupted ones, prior to applying any nonlin- 
ear filtering, is highly desirable. To achicwe this objective, 
Sun and Neiivo [5] and Florencio ant1 Scliafcr [ti] havc: pro- 
posed their switching-based median filtering Iriethodologics 
by applying- ~ “no-filtming” t,o trne pixels and SLl filter to 
impulse noise. However, we observe ccrtairi fiindainental 
concerns inherited in these schemes as follows. 

Firstly, tlie abovc-inent,ioned algoritlirns exploit a fixed 
decision-malting threshold which is obtained at, it pre-assurn- 
ed noise density levc5.l. M’hen applying the same algorithms 
to noisy images under different noise density lcvels, large 
mismatch will cause substantial degradation of the filter- 
ing performance. Sccondly, a t  high density irnpiilse noise, 
t,liose noise clctcct,ion processes often lead to incorrect, dis- 
crimination between pixel antl noise. Thirdly, when Inis- 
classification happens, more sophist,icated filtering scheme- 
also serving as a compensation process, is desirable to have 
for effective removing of corrupted pixels whilc preserving 
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tlic image det,ails. In this paper, a novel no i se  udapt ive  soft- 
switching m e d i a n  (NASM) filteririg method is proposed to 
address these concerns with architecturt: as shown in Figure 
1. 

Ihc three-level misc dctcctioii 
as oiitlinctl in Figure 2 - ~ ~ _ _ ~  

Figiirc 1: Architcctiirc of oiir proposed noise adaptive soft- 
suiitchzng incdian (NASM) filt,er. 

Oiir proposed NASM filter contaiiis a switching mech- 
anisrti steeretl by a tliree-Icvel noise detection process for 
tletcrniining each pixel’s cliarac:t,crist,ic type, followed by 
invoking proper filtmiiig action, as outlincd in Figiire 2. 
J n  oiir proposed noise tltttcctiori scheme, global or local 
pixel statist.ics have l)eeii iit,ilizcd in tlie respcct,ive decision- 
making It:vel. Action ‘‘no filtclring” will be invoked if the 
consitlerc:cl pixc?l is identified its iincorrupt,etl. Otherwise, 
SM o r  oiir proposed fuzzy ~rie ightcd  median (FWM) filter- 
ing wonld lie carried out to remove itlentiiieti irnpiilse noise 
(e.g., citlier isolatd or 1)eloiiging to z1 noise blot.ch) or pre- 
scrvc edge pixels, respectively. The proposed FWM filter 
was desigried to maximize irnpnlse noise att,eriiiat,ion while 
preserving irriage details, when inis-classification happens. 

2. THREE-LEVEL NOISE DETECTION 
SCHEME 

For each image pixel, a tliroe-levd noise detection process 
is &”rmed t,o identify the pixel as one of the four cliar- 
acteristic typcs: (i)  corrupted pixel ,  (ii) isolated i7npulse 
noise ,  (iii) non-isolated i r n p l s e  noise, and (iv) edge pixel,  
as indicated at tlie decision tree nodes in Figiire 2. 

2.1. Level 1: Detection of uncorrupted pixel 

The identification of “imcorrupted“ pixel ir i  this level is per- 
formed by iitilizing t,he globol statistsics of tlie pixel intensi- 
ties. Irnpiilse noise corrupt the iniage pixels t,o either very 
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Figure 2: Hierarchical identification of pixel’s characteris- 
tic based on a three-level noise detection process. There 
are four pixel characteristic types corresponding to the four 
nodes, respectively. 

5 x 5  
7 x 7  
9 x 9  

high or very low value. By analyzing the gray-level dif- 
ference between the noisy image and an estimation of the 
original (i.e., uncorrupted) image pixel-wise, it is expected 
that uncorrupted pixels should yield milch smaller differ- 
ence values as compared with that of the corrupted ones. 

The estimated original image is obtained by passing 
the noisy image throngh a SM filter with window size of 
W D ~  x WDI.  For that, the processing steps will be iter- 
ated twice to (i) estimate tjhe noise density level p in the 
first iteration such that approximate window size could be 
determined hased on Table 1, and (ii) repeat the same pro- 
cessing steps in the second iteration using the window size 
determined in the first iteration. To start the first iteration, 
fixed window size 7 x 7 is applied, and the noise density level 
p could be estimated by simply calculating the percentage 
of uncorrupted pixels identified. 

To achieve better identification of uncorrupted pixel, 
the estimated original image is decomposed into non-overlap- 
ping homogeneous blocks based on conventional quadt,ree 
decomposition technique. For each homogeneous block, thc 
corresponding pixel-wise difference Ai between tlie noisy 
image arid the estirriat,ed original image is computed inde- 
pendently. It is observed that uncorrupted pixels will co~i- 
tribute to tlie distribution around the center as they tend to 
yield much smaller Ai values, individually. Whereas, cor- 
rupted pixels and/or edge pixels tend to correspond to both 
tails of tlie distribution. 

Two optimal partition parameters, pr and p,,, are de- 
rived to partition the distribution of Ai into t h e e  non- 
overlapping ranges such that all tlie pixels with A, falling 
on the center range bi p,‘] are considered as being “uncor- 
rupted”. 

Consider the positive part of the distribution; i.e., At 2 
0. Denote x,, . . . , x m  as the bin values of the crror his- 
togram of & and 20 < zi < . . . < z , ~ .  Quantity ni (for 
i = 0 ,  . . . , m) indicates tlie number of elements in each 
bin, respectively. Parameter p ,  is derived to be, 

Similar analysis is repeated for the negative part of the 
distribution; i.e., Ai < 0. Let bin values z -~? ,  < Z - ~ , ~ + I  
< . . . 5 z- 1 ,  and ni represents the number of elements in 
~&ch bin, respectively. Parameter p~ is obtained as 

1 Noise densitv (17%) I Suwested bVn1 x Wnl I 
I O < u < 1 5  I 3 x 3  I 

2.2. Level 2: Detection of isolated impulse noise 

Local statistics based on a W D ~  x W D 2  decision window, 
where odd integer W D ~  satisfies 3 5 IVDZ 5 T . I J D ~ ,  is utilized 
to identify isolated impu l se  noise .  Fuzzy set approach is 
proposed, and only those uncorrupted pixels (identified in 
Level 1) within the window are considered on computing 
their membership values with respect to the center pixel. 

The membership value of uncorrupted pixels within W D 2  
XTVTJZ is defined as: 

( 3 )  

for -(TI’,92-1)/2 5 s, t 5 (1 . I /~2-1) /2 ,  and coordinate ( i , j )  
corresponds to all the uncorrupted pixels  within the window. 
parameters d,,t and di,j are the differentials of the center 
pixel’s intensity with respect to that of its neighboring un- 
corrupted pixels, individually. Starting with b V ~ 2  = 3, the 
decision window iteratively ext,ends the window’s bound- 
aries outward syninietrically by one pixel in all directions 
in each iteration, if the number of uncorrupted pixels  is less 
than ( I t ’ ~ 2  x T V D 2 ) / 2  until IVDZ = WDI. 

The above-nientioncd approach essentially transforms 
t,he “pixel map’’ into the ‘ ‘membership map”. By adopt- 
ing the same biriarization method used in absolute m o m e n t  
block t runca t ion  coding (AMBTC) (71, the mean of member- 
ship map p s , t  is used t,o divide the map into two groups-- 
higher-value group representing “closely correlated pixels” 
arid lower-value group indicating “less correlated pixels”. 
Tlie average of each group’s membership values ps,t is com- 
puted and denoted as 1-11~ and 1-11, respectively. 

Membership value of 0.75 is chosen as the confidence 
limit to assign the considered pixel to the higher-value group. 
Thus, the decision rulcs for detecting isolated impu l se  no i se  
are summarized as follows: 
Condition 1: If pl/ph > 1/3, the pixel is considered as an 
isolated impu l se  noise .  SM filtering would be carried out to 
filter that impulse noise. 
Condition 2: If p i / p ~ ~  5 1/3, the pixel is considered a5: 
belonging to a small correlated pixel block, which could be 
either a noise block or a cluster of edge pixels. Thus, further 
discrimination is required and described as follows. 
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2.3. Level 3: Discrimination between non-isolated 
impulse noise and edge pixel 

Both non-isolated impu l se  no i se  and edge pizel  are high fre- 
quency signals in essence; thus, they are most difficult to be 
discriminated. To further extend the WDZ x IVDZ window 
obtained in the second-level det,ectiori in the direction for 
including more correlated pixels will increase the dccision 
accuracy, since the percentage of correlated pixels in the 
enlarged window will increase for edge pixel  but decrease 
for non-isolated impu l se  noise .  

To do so, the algorithm checks if any window bound- 
ary of the W D ~  x WDZ decision window contains at le& 
one “closely correlated pixel” (corresponding to those pix- 
c:ls exploited on computing parameter piL as rlescribed in 
Level 2), and the corresponding boundary will then be sub- 
sequently extended outward by one pixel. If the tot,al num- 
ber of “closely correlatecl pixels” is greater than tlircshold 
S i T L ,  t,he considered pixel is viewed as edge pixel;  otherwise, 
is treated as non-isolated impu l se  noise .  Threshold SirL has 
been conservatively defiiictl to be half to the total nurnber 
of uncorrupted pixels within the enlarged window. 

3. FILTERING SCHEME 

In the filt.cring scheme, act,ion ‘‘no filt,eririg” is applied to 
those uncorruptctl pixcls ident,ified. Besides, SM filter with 
window size of Wt- x 1 % ’ ~  is c:xploitecl, ant1 tlie oiit,put pixel 
K j  is given by 

y ~ j  = meclinn{ ~ - ~ , ? - t  I (s, t )  E W} (4) 

wlicrc 1v = { ( s , t )  I -(w,<. - 1) /2  5 s , t  5 (I1.1,- - 1)/2}> 
arid only uncorrupted pixels arc considered for t,hc ranking 
process. Filtering wiridow W F  x T,VF is obt,ained in the same 
way as decision window IVDZ x TVD~; thus, 3 5 I.VF 5 111ii. 

Owing to inevitable inis-classificatiori of noise blotches 
as t:dgc pixcls, a sophist,icatetl f u z z y  uieighted rr~edian (FWM) 
filter is propostcd to strilcr: a balance bet,weeri preserving edge 
pixels and removing those noise blotches idcntifiotl. Fuzzy 
mrrribcrsliip function I L ~ , ~  obt,ainetl carlier is re-iised t,o de- 
termine all t,he weight,s of uncorrupted pixels witahin that 
W 1 . -  x TVp window, except, for the center pixel, as follows. 

By rriiniriiizing the oiit,put (lata variance o;,?, as defined 
in Equation (3) of [8 ] ,  we obtain 

p c  = ‘tps”,t , for ( s i t )  # (0,0) . (5) E.? ct /‘S!t 

‘The weighting factors of the uncorrupted pixels withiu t,he 
IVF x 1171;. filtering window are 

where X = ,u5, t  + p,., arid / L , / X  is the weighting factor 
assigned t,o tlic cent,er pixel. Therefore, the filt,cred output 
of pixel Xz,,j is 

where syrnhol 0 tienotes the duplication operathi .  

4. SIMULATION RESULTS 

4.1. Noise detection performance 

To appreciate the performance contributed from each de- 
cision level in Figure 2, parameters correct detect ion < and 
mis-classi f icat ion C are established and defined as follows, 

(8) 
corrupted (uncorrupted) pixels detected 

= total corruptecl (uncorrupted) pixels in the image 

corrupted (uncorrupted) pixels misclassified 
total corrupted (uncorrupted) pixels in the image . (9) c =  

These two parameters arc used to  measure the percentage 
of corrupted or uncorrupted pixels of the noisy image be- 
ing correctly or incorrectly classified at each decision node, 
respectively. From Table 2, it shows that tlie detection of 
uncorrupted pixels achieves over 97% of correct detection, 
indicating that the first-level noise detection successfully 
plays the dominant, role in preserving image details. Fur- 
thermore, the correct classification of isolated impu l se  no i se  
is over 99% for noise density level p 5 30%. At very high 
noise density level, p 2 50%, impulse noise tend to form 
noise blotches rather than isolated ones; thus, they are much 
harder to be detected. With the third-level noise detection, 
thc presence of noise blotches has been rc-detected and clas- 
sified as non-isolated impu l se  noise .  

4.2. Overall filtering performance 

The peak signal-to-noise ratio (PSNR) performance of the 
proposed NASM was compared with that of the 3 x 3  SM 
filter, 3 x 3  CWM [4] filter (with center weight w c  = 3), Flo- 
rencio and Schafer’s switching sclienie [ 6 ] ,  Sun and Neuvo’s 
switching scheme-I [5] and our proposed ideal-switching fil- 
t,oring. We introduce ideal-switching filter here such that it 
can be served as the theoretical upper bound (in dB) for all 
the switching-.-based rnedian filters, in order to gauge their 
filtering pcrforrriancc arid potential. The ideal-switching fil- 
ter is only achievable tlirough simulation where the position 
of each iiripulse noise injected has been exactly recorded for 
the follow-up median filtering process. 

The extrapolated PSNR. curves resulted from using var- 
ious median filters a t  different noise densities ranging from 
10% t,o 70% for “Lena” image are shown in Figure 3 . The 
proposed NASM filter significantly outperforms other filter- 
ing schemes by liaving a much slow decaying PSNR curve 
and is much closer to that of the ideal-switching filter. This 
shows the robustness of our NASM filter against wide vari- 
ation of impulse iioise. Figure 4 shows a subjcctive visual 
comparison of t,hc denoisirig performances of various meth- 
ods when the impulse noise density is imposed at p = 60%. 

5. CONCLUSION 

In this paper, a novel median filtering scheme, named no i se  
adaptiae soft-switching m e d i a n  (NASM) filt,er, is introduced. 
The proposed NASM filter has addrcssed three main con- 
cerns comnionly found in certain state-of-the-art switching-  
based median filt,crs: (i) aclaptiveness and sensitivity of deci- 
sion-making threshold, (ii) accuracy of tlie noise-detection 
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Noise I Uncorrupted I Isolated 1 

50 

Noise 
70 

I ciensitv (n%) I Dixei I imDulse noise I 

99.436 0.420 75.912 I 0.092 
98.608 0.615 20.873 I 0.321 

Non-isolated Edge 

I I I I 

30 I 99.358 I 0.127 I 99.312 I 0.172 1 

Table 2: Correct de tec t ion  E and mas-classif ication ( yielded 
at  each terminal node in Figure 2 for “Lena” image. 

process, especially a t  high noise density, and (iii) suitability 
of the median filtering scheme exploited. 

In our NASM filtering architecture, the switching mech- 
anism is steered by a three-level noise detection process to 
classify each pixel into one of the four pixel categories. Ex- 
perimental results reveal that our NASM filtering algorithm 
significantly outperforms other state-of-the-art switching- 
based median filters by having much higher PSNR. values 
and more stable performance across a wide range of noise 
densities, varying from 10% t,o 70%. 

Furthermore, the architecture of NASM filter is generic 
to be used for one-dimensional and ”&-dimensional sig- 
nals. We have applied our NASM filter for smoothing out 
irregular macroblock motion vectors extracted directly from 
MPEG bitstreanis for the application of video indexing and 
retrieval [9]. 
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Figure 3: Performance comparison using various median 
filtering techniques with noise density varying from 10% to 
70% for “Lena” image. (Legends: ‘0’ for SM; ‘0’  for CWRII; 
‘+’ for Florencio and Schafer’s Switching Scheme; ‘ x ’  for 
Sun and Neuvo’s Switching Scheme-I; ‘A’ for our NASM; 
’*’ for Ideal-Switching) 

Figure 4: (a) Corrupted “Lena” image with impulse noise 
density, p=60%. Filtered images using: (b) SM; ( c )  CWM; 
(d) Florencio and Schafer’s Switching Scheme; (e) Sun and 
Neuvo’s Switching Scheme-I; (f) our NASM; and (g) Ideal- 
switching filtering. Note that the proposed NAShl filter 
achieves almost unnoticeable difference as compared with 
the Ideal-switching filter. 
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