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ABSTRACT

‘We observed that there are certain fundamental concerns
commonly exist in some state-of-the-art switching-based
median filters: (i) fixed thresholding for the pre-assumed
noise density, (ii) the noise decision accuracy at high density
impulse noise, and (iii) the filtering scheme adopted in re-
sponse to pixel characteristic type identified. In this paper,
we propose a novel noise adaptive soft-switching median
(NASM) filter to effectively address the above-mentioned
issues and achieve much improved filtering performance in
terms of efficiency in removing impulse noise and robust-
ness against noise density variations. Experimental results
also reveal that the performance of our NASM filter is fairly
close to that of ideal-switching median filter.

1. INTRODUCTION

Standard median (SM) filter was initially introduced to elim-
inate impulse noise with reasonably good performance achie-
ved. Since then, it has been intensively studied (e.g., [1],]2])
and extended to promising approaches such as weighted me-
dian (WM)[3] and center weighted median (CWM)[4] filters.
Applying any median filtering to the entire image would
inevitably remove some detailed information of the image.
Ideally, median filtering should be only applied to corrupted
pixels while leaving those uncorrupted ones intact. There-
fore, a detection process for separating the uncorrupted pix-
els from the corrupted ones, prior to applying any nonlin-
ear filtering, is highly desirable. To achieve this objective,
Sun and Neuvo [5] and Florencio and Schafer [6] have pro-
posed their switching-based median filtering methodologics
by applying—-“no-filtering” to true pixels and SM filter to
impulse noise. However, we observe certain fundamental
concerns inherited in these schemes as follows.

Firstly, the above-mentioned algorithms exploit a fixed
decision-making threshold which is obtained at a pre-assum-
ed noise density level. When applying the same algorithms
to noisy images under different noise density levels, large
mismatch will cause substantial degradation of the filter-
ing performance. Secondly, at high density impulse noise,
those noise detection processes often lead to incorrect dis-
crimination between pixel and noise. Thirdly, when mis-
classification happens, more sophisticated filtering scheme—
also serving as a compensation process, is desirable to have
for effective removing of corrupted pixels while preserving
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the image details. In this paper, a novel noise adaptive soft-
switching median (NASM) filtering method is proposed to
address these concerns with architecture as shown in Figure
1.

Switch

" 'Nofiltering
(or Identity Filter)

- Standard Median prul signal
___ (SM)Tiler
"Fuzzy Weighted )
. L - |

Median (FWM) Filter -
{Swi(chiné mechanism ha@loq

S
Input signal /\1
— S

the three-level noise detection
as outlined in Figure 2

Figure 1: Architecture of our proposed noise adaptive soft-
switching median (NASM) filter.

Our proposed NASM filter contains a switching mech-
anism steered by a three-level noise detection process for
determining each pixel’s characteristic type, followed by
invoking proper filtering action, as outlined in Figure 2.
In our proposed noise detection scheme, global or local
pixel statistics have been utilized in the respective decision-
making level. Action “no filtering” will be invoked if the
considered pixel is identified as uncorrupted. Otherwise,
SM or our proposed fuzzy weighted median (FWM) filter-
ing would be carried out to remove identified impulse noise
(e.g., either isolated or belonging to a noise blotch) or pre-
serve edge pixels, respectively. The proposed FWM filter
was designed to maximize impulse noise attenuation while
preserving image details, when mis-classification happens.

2. THREE-LEVEL NOISE DETECTION
SCHEME

For each image pixel, a three-level noise detection process
is performed to identify the pixel as one of the four char-
acteristic types: (i) uncorrupted pizel, (il) isolated impulse
noise, (iii) non-isolated impulse noise, and (iv) edge pizel,
as indicated at the decision tree nodes in Figure 2.

2.1. Level 1: Detection of uncorrupted pixel

The identification of “uncorrupted” pixel in this level is per-
formed by utilizing the global statistics of the pixel intensi-
ties. Impulse noise corrupt the image pixels to either very
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Figure 2: Hierarchical identification of pixel’s characteris-
tic based on a three-level noise detection process. There
are four pixel characteristic types corresponding to the four
nodes, respectively.

high or very low value. By analyzing the gray-level dif-
ference between the noisy image and an estimation of the
original (i.e., uncorrupted) image pixel-wise, it is expected
that uncorrupted pixels should yield much smaller differ-
ence values as compared with that of the corrupted ones.

The estimated original image is obtained by passing
the noisy image through a SM filter with window size of
Wp1 x Wpi. For that, the processing steps will be iter-
ated twice to (i) estimate the noise density level p in the
first iteration such that approximate window size could be
determined based on Table 1, and (ii) repeat the same pro-
cessing steps in the second iteration using the window size
determined in the first iteration. To start the first iteration,
fixed window size 7 x 7 is applied, and the noise density level
p could be estimated by simply calculating the percentage
of uncorrupted pizels identified.

To achieve better identification of uncorrupted pixel,
the estimated original image is decomposed into non-overlap-
ping homogeneous blocks based on conventional quadtree
decomposition technique. For each homogeneous block, the
corresponding pixel-wise difference A; between the noisy
tmage and the estimated original image is computed inde-
pendently. It is observed that uncorrupted pixels will con-
tribute to the distribution around the center as they tend to
yield much smaller A; values, individually. Whereas, cor-
rupted pixels and/or edge pixels tend to correspond to both
tails of the distribution.

Two optimal partition parameters, p; and p,, are de-
rived to partition the distribution of A; into three non-
overlapping ranges such that all the pixels with A; falling
on the center range [p; p.] are considered as being “uncor-
rupted”.

Consider the positive part of the distribution; i.e., A; >
0. Denote z,, ..., Tm as the bin values of the error his-
togram of A; and o < z1 < ... < z,. Quantity n; (for

i =0, ..., m) indicates the number of elements in each
bin, respectively. Parameter p, is derived to be,
Pu= = | ni (e — =)+ nife = )] . (1)
Titoni o D 2 i=m /2 2

Similar analysis is repeated for the negative part of the
distribution; i.e., A; < 0. Let bin values z_,n, < Z_n41
< ... < z_1, and n; represents the number of elements in
each bin, respectively. Parameter p; is obtained as
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Noise density (p%) | Suggested Wp1 x Wpi
0<p<Ib 3% 3
15 <p<30 5 x5
30 <p < 45 TX 7T
15 < p <60 9% 9
60 <p <70 11 x 11

Table 1: Suggested window dimension of Wp1 x Wp; for
the noise density level p being estimated.

2.2. Level 2: Detection of isolated impulse noise

Local statistics based on a Wps x Wpa decision window,
where odd integer Wp2 satisfies 3 < Wpa < Wp,, is utilized
to identify isolated tmpulse noise. Fuzzy set approach is
proposed, and only those uncorrupted pixels (identified in
Level 1) within the window are considered on computing
their membership values with respect to the center pixel.

The membership value of uncorrupted pixels within Wp2
xWp3 is defined as:

we(EXE)

for —(Wpa—1)/2 < s, < (Wp2—1)/2, and coordinate (z, 7)
corresponds to all the uncorrupted pizels within the window.
Parameters d,; ; and d;; are the differentials of the center
pixel’s intensity with respect to that of its neighboring un-
corrupted pixels, individually. Starting with Wpa = 3, the
decision window iteratively extends the window’s bound-
aries outward symmetrically by one pixel in all directions
in each iteration, if the number of uncorrupted pizels is less
than (I’VDQ X ‘VDQ)/? until Wpo = Wps.

The above-mentioned approach essentially transforms
the “pizel map”’ into the “membership map”. By adopt-
ing the same binarization method used in absolute moment
block truncation coding (AMBTC) [7], the mean of member-
ship map ps¢ is used to divide the map into two groups—
higher-value group representing “closely correlated pixels”
and lower-value group indicating “less correlated pixels”.
The average of each group’s membership values p, ; is com-
puted and denoted as pp, and g, respectively.

Membership value of 0.75 is chosen as the confidence
limit to assign the considered pixel to the higher-value group.
Thus, the decision rules for detecting isolated impulse noise
are summarized as follows:

Condition 1: If y;/ps > 1/3, the pixel is considered as an
isolated impulse noise. SM filtering would be carried out to
filter that impulse noise.

Condition 2: If p;/p, < 1/3, the pixel is considered as
belonging to a small correlated pixel block, which could be
either a noise block or a cluster of edge pixels. Thus, further
discrimination is required and described as follows.
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2.3. Level 3: Discrimination between non-isolated
impulse noise and edge pixel

Both non-isolated impulse noise and edge pizel are high fre-
quency signals in essence; thus, they are most difficult to be
discriminated. To further extend the Wpy x Wp2 window
obtained in the second-level detection in the direction for
including more correlated pixels will increase the decision
accuracy, since the percentage of correlated pixels in the
enlarged window will increase for edge pizel but decrease
for non-isolated tmpulse noise.

To do so, the algorithm checks if any window bound-
ary of the Wps x Wpa decision window contains at least
one “closely correlated pixel” (corresponding to those pix-
els exploited on computing parameter p;, as described in
Level 2), and the corresponding boundary will then be sub-
sequently extended outward by one pixel. If the total num-
ber of “closely correlated pixels” is greater than threshold
Sin, the considercd pixel is viewed as edge pizel; otherwise,
is treated as non-isolated impulse noise. Threshold S;;, has
been conservatively defined to be half to the total number
of uncorrupted pixels within the enlarged window.

3. FILTERING SCHEME

In the filtering scheme, action “no filtering” is applied to
those uncorrupted pixels identified. Besides, SM filter with
window size of W x W is exploited, and the output pixel
Yi; is given by

Yij = me(lia.n{Xi;w_t | (5,8) € W'} (4)
where W = {(s,8) | ~(Wr —1)/2 < 5,t < (Wp — 1)/2},
and only uncorrupted pixels are considered for the ranking
process. Filtering window Wr x Wy is obtained in the same
way as decision window Wpa x Wpo; thus, 3 < Wp < Wpy.
Owing to inevitable mis-classification of noise blotches
as edge pixels, a sophisticated fuzzy weighted median (FWM)
filter is proposed to strike a balance between preserving edge
pixels and removing those noise blotches identified. Fuzzy
membership function g,y obtained earlier is re-used to de-
termine all the weights of uncorrupted pixels within that
Wi x Wi window, except for the center pixel, as follows.

By minimizing the output data variance o2, as defined
in Equation (3) of [8], we obtain

fe = %j—%:—ﬁi , for (s,t) # (0,0).

The weighting factors of the uncorrupted pizels within the
Wr x Wp filtering window are

{ 2L for (s,8) # (0,0);

ke ifs=t=0,

[

(5)

)

(6)

Ws t =

S5
)

where X = 3 psr + pe, and pe /X is the weighting factor
assigned to the center pixel. Therefore, the filtered output
of pixel X; ; is

Yij = ]Iledian{W1'¥s,j*f0Xi*5,j—{I(S, t) € IV} (7)

where symbol O denotes the duplication operation.
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4. SIMULATION RESULTS

4.1. Noise detection performance

To appreciate the performance contributed from each de-

cision level in Figure 2, parameters correct detection £ and

mis-classification { are established and defined as follows,
corrupted (uncorrupted) pixels detected

&= (8)

total corrupted (uncorrupted) pixels in the image

corrupted {uncorrupted) pixels misclassified

(9

" total corrupted (uncorrupted) pixels in the image

These two parameters are used to measure the percentage
of corrupted or uncorrupted pixels of the noisy image be-
ing correctly or incorrectly classified at each decision node,
respectively. From Table 2, it shows that the detection of
uncorrupted pixels achieves over 97% of correct detection,
indicating that the first-level noise detection successfully
plays the dominant role in preserving image details. Fur-
thermore, the correct classification of isolated impulse noise
is over 99% for noise density level p < 30%. At very high
noise density level, p > 50%, impulse noise tend to form
noise blotches rather than isolated ones; thus, they are much
harder to be detected. With the third-level noise detection,
the presence of noise blotches has been re-detected and clas-
sified as non-isolated impulse noise.

4.2. Overall filtering performance

The peak signal-to-noise ratio (PSNR) performance of the
proposed NASM was compared with that of the 3x3 SM
filter, 3x3 CWM [4] filter (with center weight w. = 3), Flo-
rencio and Schafer’s switching scheme [6], Sun and Neuvo’s
switching scheme-I [5] and our proposed ideal-switching fil-
tering. We introduce ideal-switching filter here such that it
can be served as the theoretical upper bound (in dB) for all
the switching-based median filters, in order to gauge their
filtering performance and potential. The ideal-switching fil-
ter is only achievable through simulation where the position
of each impulse noise injected has been exactly recorded for
the follow-up median filtering process.

The extrapolated PSNR curves resulted from using var-
ious median filters at different noise densities ranging from
10% to 70% for “Lena” image are shown in Figure 3 . The
proposed NASM filter significantly outperforms other filter-
ing schemes by having a much slow decaying PSNR curve
and is much closer to that of the ideal-switching filter. This
shows the robustness of our NASM filter against wide vari-
ation of impulse noise. Figure 4 shows a subjective visual
comparison of the denoising performances of various meth-
ods when the impulse noise density is imposed at p = 60%.

5. CONCLUSION

In this paper, a novel median filtering scheme, named noise
adaptive soft-switching median (NASM) filter, is introduced.
The proposed NASM filter has addressed three main con-
cerns commonly found in certain state-of-the-art switching-
based median filters: (i) adaptiveness and sensitivity of deci-
sion-making threshold, (ii) accuracy of the noise-detection

Authorized licensed use limited to: Peking University. Downloaded on April 8, 2009 at 03:15 from IEEE Xplore. Restrictions apply.



Noise Uncorrupted Isolated
density (p%) pixel impulse noise
ER) [CR) | €% [ C(R)
10 97.321 | 0.110 | 99.633 | 1.066
30 99.358 | 0.127 | 99.312 | 0.172
50 99.436 | 0.420 | 75.912 | 0.092
70 98.608 | 0.615 | 20.873 | 0.321
Noise Non-isolated Edge
density (p%) | impulse noise pixel
E%) TC(R) [ €() | ¢ (%)
10 0.087 0.281 1.333 0.170
30 0.309 | 0.106 | 0.363 0.252
50 21.876 | 0.159 | 0.312 1.792
70 72.783 | 0.640 | 0.431 5.728

Table 2: Correct detection & and mis-classification ¢ yielded
at each terminal node in Figure 2 for “Lena” image.

process, especially at high noise density, and (iii) suitability
of the median filtering scheme exploited.

In our NASM filtering architecture, the switching mech-
anism is steered by a three-level noise detection process to
classify each pixel into one of the four pixel categories. Ex-
perimental results reveal that our NASM filtering algorithm
significantly outperforms other state-of-the-art switching-
based median filters by having much higher PSNR. values
and more stable performance across a wide range of noise
densities, varying from 10% to 70%.

Furthermore, the architecture of NASM filter is generic
to be used for one-dimensional and multi-dimensional sig-
nals. We have applied our NASM filter for smoothing out
irregular macroblock motion vectors extracted directly from
MPEG bitstreams for the application of video indexing and
retrieval [9].
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Figure 3: Performance comparison using various median
filtering techniques with noise density varying from 10% to
70% for “Lena” image. (Legends: ‘00’ for SM; ‘o’ for CWM;
‘+’ for Florencio and Schafer’s Switching Scheme; ‘x’ for
Sun and Neuvo’s Switching Scheme-I; ‘A’ for our NASM;
% for Ideal-Switching)

Figure 4: (a) Corrupted “Lena” image with impulse noise
density, p=60%. Filtered images using: (b) SM; (¢) CWM;
(d) Florencio and Schafer’s Switching Scheme; (e) Sun and
Neuvo’s Switching Scheme-I; (f) our NASM; and (g) Ideal-
switching filtering. Note that the proposed NASM filter
achieves almost unnoticeable difference as compared with
the Ideal-switching filter.

Authorized licensed use limited to: Peking University. Downloaded on April 8, 2009 at 03:15 from IEEE Xplore. Restrictions apply.



