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Abstract 
Digital control of color television monitors—in particular, via frame buff-

ers—has added precise control of a large subset of human colorspace to the ca-
pabilities of computer graphics. This subset is the gamut of colors spanned by the 
red, green, and blue (RGB) electron guns exciting their respective phosphors. It is 
called the RGB monitor gamut. Full-blown color theory is a quite complex subject 
involving physics, psychology, and physiology, but restriction to the RGB moni-
tor gamut simplifies matters substantially. It is linear, for example, and admits to 
familiar spatial representations. This paper presents a set of alternative models of 
the RGB monitor gamut based on the perceptual variables hue (H), saturation (S), 
and value (V) or brightness (L). Algorithms for transforming between these mod-
els are derived. Particular emphasis is placed on an RGB to HSV nontrigonomet-
ric pair of transforms which have been used successfully for about four years in 
frame buffer painting programs. These are fast, accurate, and adequate in many 
applications. Computationally more difficult transform pairs are sometimes nec-
essary, however. Guidelines for choosing among the models are provided. Psy-
chophysical corrections are described within the context of the definitions estab-
lished by the NTSC (National Television Standards Committee). 

KEY WORDS AND PHRASES: color, gamut, hue, saturation, value, brightness, lumi-
nance, NTSC, color transform. 
CR CATEGORY: 8.2, 3.41, 3.17. 
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Introduction 
A color television monitor with independent video inputs to each of its red, 

green, and blue guns is an RGB monitor. The range of colors produced by the 
guns of an RGB monitor is its gamut. In computer graphics, the guns are digitally 
controlled, the full analog range of each gun being approximated by 2mn =  dis-
tinct and equally spaced values. For 8m ≥ , most humans cannot perceive the dif-
ference between analog and digital control, the discrete and continuous become 
one perceptually. For this reason, we shall use the term gamut to refer to both the 
continuous gamut defined above and the digital approximation to it which is the 
primary concern of this paper. 

We shall assume that an RGB monitor is a linear device. But the light inten-
sity emitted by the cathode ray tube in a television monitor is a nonlinear func-
tion of its driving voltages. Hence the assumption of linearity implies the exis-
tence of a black box between the numbers used for digital input and the numbers 
actually used to digitally control the input voltages. This black box compensates 
for the nonlinearity of the cathode ray tube. It can be implemented as a simple 
lookup table and is called a gamma-correction, or compensation, table. Hence an 
RGB monitor is assumed to contain a gamma-correction table (perhaps in soft-
ware) for each gun. It is this combination which is thought of as a linear device. 

Since the three guns of an RGB monitor can be varied independently and 
must have nonnegative input less than a given maximum rating, its gamut can 
be represented by a cube (Fig. 1). We shall refer to this “natural” gamut model as 
the (RGB) colorcube. 

In the colorcube model, a color is a vector in a (finite) 3-dimensional space 
where the dimensions R, G, and B are called the primaries. The coordinate system 
is a rectangular one. It is a simple space in which familiar linear algebra opera-
tions hold. For example, Plate 1 shows the result of applying the following sim-
ple linear transform to the RGB colorcube of Fig. 1: 

.60 .28 .32

.21 .52 .31

.30 .59 .11

I R

Q G

Y B

− −     
     = −     
          

 

Thus the new set of primaries I, Q, and Y also form a linear space. They are, in 
fact, the transmission primaries recommended by the NTSC (National Television 
Standards Committee) in 1953 [3] as a basis for generating the broadcast color 
television signal in the US. The Y dimension, called luminance, measures the 
brightness perceived by a human watching a typical home television receiver 
(and is, in fact, the only signal received by a black-and-white set). That is, IQY 
space can be considered a psychophysical adjustment of RGB space which takes 
into account both the properties of the RGB phosphors and the perceptions of the 
so-called standard observer [2]. 

In this paper we explore two gamut models, both with polar coordinate sys-
tems. In some situations, such as color mixing, these models are more intuitively 
satisfying or more convenient to an artist than the colorcube. Hence we derive 
algorithms for transforming between these alternative models and the colorcube. 
A transform pair consists of the algorithm for transforming from the colorcube to 
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one of the alternatives and the inverse algorithm for transforming back to the 
colorcube. We also indicate when it is advantageous to use one or the other of the 
models instead of the colorcube. In particular, the NTSC space will be a special 
case of only one of them. 

The first of the two new models, the hexcone model, is intended to capture the 
common notions of hue, saturation, and value (HSV) as three dimensions for de-
scribing a color. Briefly, hue is the dimension with points on it normally called 
red, yellow, blue-green, etc. Saturation measures the departure of a hue from 
achromatic, ie, from white or gray. Value measures the departure of a hue from 
black, the color of zero energy. These terms, defined more carefully in a follow-
ing section, are meant to capture the artistic ideas of hue, tint, shade, and tone il-
lustrated in Plate 2. 

The other model, the triangle model, has the closely related dimensions hue, 
saturation, and brightness (HSL). (Alternative names for brightness are lightness 
and intensity. The distinction is sometimes made that brightness refers to self-
luminous objects and lightness to non-self-luminous objects. We maintain this 
distinction here but use the symbol L to avoid conflict with B for blue. An alter-
native for saturation is chroma although the distinction is sometimes made that 
saturation is a relative measure of color “purity”, or non-whiteness, while 
chroma is absolute.) Hue and saturation are as for the hexcone model, but 
brightness measures the energy in a color instead of its non-blackness. We might 
define it by 

( ) / 3uL R G B= + + , 
the denominator serving merely to normalize the brightness into the range [0, 1]. 
The definition we shall introduce in a later section is much more general than 
this, however. It includes, for example, 

.30 .59 .11nL Y R G B= = + +  
which is NTSC luminance. So the triangle model is actually a class of models. 
The two running examples of it in this paper will correspond to brightness defi-
nitions uL , the unbiased case, and nL , the NTSC case. 

The distinction between value and brightness is important. It is illustrated by 
this example: Red, white, and yellow all have the same value (no blackness), but 
red has one third the brightness of white (using definition uL ), and one half the 
brightness of yellow. The principal distinction between the two is the manner in 
which the pure (fully saturated) hues are treated. There is a plane containing all 
the pure hues in HSV space, but not in HSL space. Hence V would be used 
where the pure hues are to be given equal weight—eg, in a painting program. L 
would be used where colors must be distinguished by their brightness—eg, in 
choosing colors for an animated cartoon such that the colors are distinguishable 
even on a black-and-white television receiver. 

Background and Experience 
Transform pairs based on the hexcone model have been used successfully in 

painting programs at Xerox PARC (Palo Alto Research Center) for four years and 
NYIT (New York Institute of Technology) for three years. At both of these com-
puter graphics installations, digital control of an RGB monitor is exercised via a 
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frame buffer (or picture memory), a piece of memory large enough to hold one 
video frame in digital form. The frame buffer contents can be viewed on an RGB 
monitor thirty times a second—ie, at video rate. 

The triangle model is a generalization of a model derived at SRI (Stanford 
Rseearch Institute) [4]. In that reference, a transform from RGB to HSL for what 
we call the unbiased case is derived. The inverse transform from HSL to RGB is 
derived here. 

The Hexcone Model 
A person using a computer to control an RGB monitor could, by varying 

each of the primaries, mix any color he desired (if, of course, it were one of the 3n  
colors in the gamut). The reader can try this mixing technique by mentally vary-
ing R, G, and B to obtain, say, pink or brown. It is not unusual to have difficulty. 
Following is an alternative way, mimicing the way an artist mixes paints on his 
palette: He chooses a pure hue, or pigment, and lightens it to a tint of that hue by 
adding white, or darkens it to a shade of that hue by adding black, or in general 
obtains a tone of that hue by adding some mixture of white and black, a gray [1]. 
Plate 2 summarizes these terms. 

The hexcone model is an attempt to transform the RGB colorcube dimensions 
into a set of dimensions modeling the artist’s method of mixing. These are called 
hue, saturation, and value (HSV). Varying H corresponds to traversing the color 
circle. Decreasing S (desaturation) corresponds to increasing whiteness, and de-
creasing V (devaluation) corresponds to increasing blackness. Following is a 
simple interpretation of these dimensions. Then we state the RGB to HSV color 
transform pair of algorithms and proceed to derive them. The derivation con-
tains a detailed description of the geometry of the hexcone model. 

Color Bar Interpretation of HSV 
A color is represented in Plate 4 by three bars. It is obtained by mixing R, G, 

and B in the proportions implied by the lengths of the three bars. It is convenient 
to understand HSV in terms of this representation. V is simply the height of the 
tallest bar. If X is the height of the smallest bar, then ( , , )X X X  is the gray which 
is desaturating the color. Subtracting the “DC-level” of gray from the color, 
leaves the hue information as a proportional mix of two primaries. This leads us 
to the observation that a color is a mixture of at most three primaries, a hue of a 
most two primaries, and a primary, of course, of one primary. 

RGB to HSV Algorithm (Hexcone Model) 
Given: R, G, and B, each on domain [0, 1]. 
Desired: The equivalent H, S, and V, each on range [0, 1]. 
1. : max( , , );V R G B=  
2. Let : min( , , );X R G B=  

3. : ;
V X

S
V

−= if 0S =  return; 

4. Let :
V R

r
V X

−=
−

; :
V G

g
V X

−=
−

; :
V B

b
V X

−=
−

; 
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5. If R V=  then :H = (if G X=  then 5 b+  else 1 g− ); 
if G V=  then :H =  (if B X=  then 1 r+  else 3 b− ); 

else :H =  (if R X=  then 3 g+  else 5 r− ); 

6. :
6
H

H = ; 

Remarks: 1) 0H =  is taken to be red (ie, G B=  and R B> ) by convention. 2) Spe-
cial care must be exercised at the singular points 0S = —ie, where R G B= = , the 
gray, or achromatic, axis of the hexcone. Hue is not defined along this axis. Often 
the hue is simply immaterial at such a gray point. A practice which frequently 
succeeds is to define H at a singularity to be what is was as a result of the last call 
to the transform. Smooth traversals of the gamut tend to leave H at a reasonable 
definition using this technique. 

HSV to RGB Algorithm (Hexcone Model) 
Given: H, S, and V, each on domain [0, 1]. 
Desired: The equivalent R, G, and B, each on range [0, 1]. 
1. : 6*H H= ; 
2. Let : floor( )I H= ; :F H I= − ; 
3. Let : (1 )M V S= ∗ − ; : (1 )N V S F= ∗ − ∗ ; : (1 (1 ))K V S F= ∗ − ∗ − ; 
4. Switch on I into 

case 0: ( , , ) : ( , , )R G B V K M= ; 
case 1: ( , , ) : ( , , )R G B N V M= ; 
case 2: ( , , ) : ( , , )R G B M V K= ; 
case 3: ( , , ) : ( , , )R G B M N V= ; 
case 4: ( , , ) : ( , , )R G B K M V= ; 
case 5: ( , , ) : ( , , )R G B V M N= ; 

Remarks: 1) floor(x) is the integer just less than or equal x. 2) Only one case is 
executed in the switch statement. 3) The expression ( , , ) : ( , , )R G B X Y Z=  abbrevi-
ates :R X= ; :G Y= ; :B Z= . 

Derivation of the Hexcone Model 
If the colorcube is projected along its main diagonal (the gray axis) onto a 

plane perpendicular to the diagonal, a hexagonal disk (a hexagon and its inte-
rior) results (Plate 3). The interior points are those colors one would see looking 
at the colorcube along its gray axis in the direction from white to black. For each 
value of gray, there is an associated subcube of the colorcube (Fig. 1). Corre-
sponding to each subcube—ie, to each gray value—is a projection as before. As 
the gray level changes from 0 (black) to 1 (white), one moves from one hexagonal 
disk to the next. Each disk is larger than the preceding one, with the disk for 
black being a point. This is the hexcone. Each disk can be thought of as the three 
“brightest” faces of the associated subcube projected onto a plane. The projection 
is scaled so that the length of a side of the colorcube in the projection equals the 
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length of a side in the solid. Notice that by specifying V, one has specified that at 
least one of R, G, or B equals V, and none is larger. Hence max( , , )V R G B= . 

Consider any one disk in the hexcone (selected by varying V). H and S must 
specify a point in this disk. In the hexcone model, H is taken to be the angle and S 
is taken to be the length of a vector centered on the gray point of the disk. In 
Plate 3 the loci of constant S are shown for one disk. They are hexagons. So when 
we speak of the angle H, we imply a proportional length along these hexagonal 
loci, not along circles. S is assumed to be a relative length, relative to the longest 
possible radius at the given angle. 

S varies from 0 to 1 in each disk. 0S =  implies the color is gray value V for 
disk V (centered at gray value V) regardless of hue. 1S =  implies a color lying on 
the bounding hexagon of disk V. Notice that 1S =  implies at least one of R, G, or 
B is 0. For disk 1, this bounding hexagon may be identified with the color circle. 
As H is varied from 0 to 1 around this hexagon (saturation locus), the two of R, 
G, and B which are nonzero are specified (and one of these, of course, is 1). Thus 
V determines one primary, and the vector of length S and angle H determines the 
other two. This is how we compute saturation from RGB: 

Consider the hexagonal disk in Fig. 2 which is divided into three sectors 
which are subdivided by the dashed lines to form six sextants. Let IJ  be the 
length of the vector from arbitrary point I to arbitrary point J in this figure. Then 
S for the color at point P is 

WP WD WY DY
S

WP WY WY

−
= = =

′
. 

For disk V each side of the hexagon has length V; hence WY V= . For P in the 
sector shown ( 60 60H− ≤ ≤o o ), R V= . The sextant in this sector into which P falls 
depends on which of the other two primaries is smaller. In this example, B is the 
smallest component so P falls in the sextant for which 0 60H≤ ≤o o . Notice that 
B DY=  and G V PD= −  in this sextant. So min( , , )DY R G B=  in this sextant, 
and 

min( ,  ,  )V R G B
S

V

−= . 

Similar arguments for each of the other five sextants show this to be a general re-
lationship for all H. 

The relationship for H can be derived from the same figure. For P in the sex-
tant shown, H (on range [0, 1]) is 

 AP EP EA EP AF
H

AD AD AD

− −
= = = . 

But G EP=  and B AF=  and AD WD=  implies1 
min( ,  ,  )
min( ,  ,  )

G R G B
H

V R G B

−=
−

 

                                                 
1 Typo AB WD=  in the original 
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in this sextant. The exact expression for H is dependent on the sextant but can be 
derived similarly. The results are summarized in the statement of the algorithm 
above. 

Fig. 2 can also be used to derive the inverse of the transform derived above. 
For P in the sextant shown R G>  and R B>  hence R V= . S in this sextant is 

 

WP WD WY DY V B
S

WP WY WY V

− −= = = =
′

. 

Thus 
(1 )B V S= − . 

H (on domain [0, 1]) in this sextant is 
AP EP EA G B

H
AD ED EA V B

− −= = =
− −

. 

Substituting the expression just derived for B yields 
(1 (1 ))G V S H= − − . 

Similar derivations can be made in each sextant to obtain the results in the algo-
rithm statement above. 

The Triangle Model 
Consider the normalization of a given color ( , , )R G B  defined by 

GR Bw Gw R w B
r g b

L L L
= = =  

where 
R G BL w R w G w B= + +  

is the generalized brightness and weights 
0 0 0R G Bw w w≥ ≥ ≥  

and 
1R G Bw w w+ + = . 

All such normalized colors fall in the plane 
1r g b+ + =  

and are bounded by the equilateral triangle shown in Fig. 3. The gray points, 
R G B= = , all map into 

( , , )R G BW w w w= . 
For example, if 1

3R G Bw w w= = = , the gray point is  1 1 1
3 3 3( , , ) . This special case, as 

mentioned earlier, is called the unbiased case (Plate 5). Another case of special in-
terest mentioned earlier is the NTSC case for which .30Rw = , .59Gw = , .11Bw = . 
Hence nL L Y= =  is the normalization factor in the NTSC case. The gray point 
(.30,.59,.11)  is “biased” away from the centroid of the equilateral triangle (Fig. 5). 

The triangle so obtained is an example of what is known in color theory as a 
chromaticity diagram [2]. The most famous such diagram is that from 1931 of the 
CIE (Commission Internationale de l’Eclairage), shown in Fig. 4. It includes the 
entire human color gamut. We include it to cast the current paper in appropriate 
perspective: The gamuts of two RGB monitors are shown as triangular subsets. 
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The larger is the 1953 NTSC recommended gamut, and the smaller that of an ac-
tual modern gamut (for a Barco monitor at NYIT). 

RGB to HSL Algorithm (Triangle Model) 
Given: R, G, and B, each on domain [0, 1]. 
Desired: The equivalent H, S, and L, each on range [0, 1]. 
1. : R G BL w R w G w B= ∗ + ∗ + ∗ ; 

2. Let :
R

r
L

′ = ; :
G

g
L

′ = ; :
B

b
L

′ = ; 

Let : *Rr w r′= ; : *Gg w g ′= ; : *Bb w b′= ; 

Let : Rrr r w= − ; : Ggg g w= − ; : Bbb b w= − ; 

3. : 1 min( , , )S r g b′ ′ ′= − ; if 0S =  return; 

4. Let 2 2 2
0 : sqrt( )k rr gg bb= + + ; 

Let : 1R Rw w′ = − ; 

Let : * * *R G Bd w rr w gg w bb′= − − ; 

Let 2 2 2
1 : sqrt( )R G Bk w w w′= + + ; 

Let 
0 1

:
d

x
k k

=
∗

; 

5. 2: 90 arctan
sqrt(1 )

x
H

x

 
= −  − 

o ; 

6. If b g′ ′>  then : 360H H= −o ; 

7. :
360
H

H = o ; 

Remarks: As in the hexcone model, 0H =  at red by convention, and the gray axis 
is a locus of singularities in H. 

HSL to RGB Algorithm (Triangle Model) 
Given: H, S, and L, each on domain [0, 1]. 
Desired: The equivalent R, G, and B, each on range [0, 1]. 
1. : *360H H= o ; 
2. Compute angles 0 : ( )R Ga A P WP=  and 1 : ( )G Ba A P WP=  (in degrees); 
3. Compute angles 0 : ( )R RA A R WQ= , 1 : ( )G GA A R WQ= , and 2 : ( )B BA A R WQ= ; 
4. If 00 H a≤ ≤  then  

begin 
 0:H H A= + ;2 

 : (1 )Bb w S= ∗ − ; 
                                                 
2 [ 0A−  in the original.] 
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 cos( )
:

cos(60 )R B

H
r w w S

H
= + ∗ ∗

−o ; 

 : 1 ( )g r b= − + ; 
end 
else if 0 0 1( )a H a a≤ ≤ +  then 

begin 
 0 1:H H a A= − + ;3 

 : (1 )Rr w S= ∗ − ; 

 cos( )
:

cos(60 )G R

H
g w w S

H
= + ∗ ∗

−o ; 

 : 1 ( )b r g= − + ; 

end 
else 
begin 

 0 1 2:H H a a A= − − + ;4 

 : (1 )Gg w S= ∗ − ; 

 cos( )
:

cos(60 )B G

H
b w w S

H
= + ∗ ∗

−o ; 

 : 1 ( )r g b= − + ; 
end 

5. :
R

r
R L

w
= ∗ ; :

G

g
G L

w
= ∗ ; :

B

b
B L

w
= ∗ ;5 

Remarks: 1) For ease of presentation, it is assumed that the user has at his dis-
posal a procedure TRIANGLE which computes, for a given set of weights, all 
constant angles and lengths in the equilateral triangle associated with the trian-
gle model (Fig. 5). See derivation below. 2) As opposed to the hexcone model, it 
is possible to transform HSL on the given domains into unrealizable RGB values 
(R, G, or 1B > ) because the gamut is finite. For example, this is the case if 1L =  
and 0S > . It is not difficult to derive, although we do not do so here, a set of re-
alizability conditions for computing when this will happen6. 

Examples 
The unbiased case: 

                                                 
3 [ 1A−  in the original.] 
4 [ 2A−  in the original.] 
5 [The multiplier L was omitted in all three cases in the original.] 
6 [See NYIT Tech Memo No 8 for these conditions.] 
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1
3

0 1

0 1 2

120

0

R G Bw w w

a a

A A A

= = =

= =

= = =

o

o

 

The NTSC case: 

0 1

0 1 2

.30 .59 .11

156.58 115.68

21.60 14.98 10.65

R G Bw w w

a a

A A A

= = =

= =

= − = =

o o

o o o

 

Derivation of the Triangle Model 
As mentioned above, there is assumed to be a procedure TRIANGLE with 

which any constant concerning the triangle in Fig. 5 can be computed, given 
weights Rw , Gw , and Bw . Two types of constants are computed by TRIANGLE, 
angles and lengths. For 3-dimensional points X, Y, and Z, XY  represents the 
length of the vector from X to Y, as before. ( )A XYZ represents the angle at Y be-
tween vector YX and vector YZ . The following observations about the geometry 
of the triangle are useful in the derivation: 
1. The lines i iPQ , , ,i R G B= , all intersect at W by construction. 
2. The line R RP Q  is the locus of points ( , , )r g b′ ′ ′  for which g b′ ′= . 
3. Any point in the planar region bounded by triangle R R GP Q P  has g b′ ′≥ . Any 

point in R R BP Q P  has b g′ ′≥ . Hence R RP Q  separates the g b′ ′>  region from the 
g b′ ′<  region. Similarly, G GP Q  separates the b r′ ′>  region from the r b′ ′<  re-
gion, and B BP Q  separates the r g′ ′>  region from the r g′ ′<  region. 

4. For i R= , G, or B, i i i iWQ PQ w=  and 1i i i iWP PQ w= − . 
5. The RG sector is the region bounded by R GWP P . The GB sector is the region 

bounded by G BWP P , and the BR sector is the region bounded by B RWP P . 
As in the hexcone model, H and S of an arbitrary color are defined with re-

spect to a vector from the gray point W. Let the normalized color be represented 
by point P. Then H is the angle ( )RA P WP , and S is the ratio WP WP′ , where WP′  
is the intersection of the extension of WP with the nearest side of the triangle ( in 
the case shown in Figs. 3 and 5). 

Consider Fig. 3 for computing S in terms of R, G, and B. T is the projection of 
W onto the rg plane parallel the b axis. Q is the projection of P onto WT parallel 
the rg plane. 

WP WQ WT QT
S

WP WT WT

−
= = =

′
. 

But BWT w=  and QT b=  in the sector shown; hence 
1S b′= − . 

But min( , , )b r g b′ ′ ′ ′=  in the RG sector. In fact, an argument similar to that above 
for P in each of the other two sectors shows the relationship 

1 min( , , )S r g b′ ′ ′= − . 
to be true in general. 

Fig. 5 will be used to compute H. For  0 180H≤ ≤o o  
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cos( )R RWP WP WP WP H=i . 
where i  is the dot product. But 0WP k= , 1RWP k= , and RWP WP d=i  as defined in 
the algorithm statement. Let 

0 1

d
x

k k
= . 

Then arccos( )H x= . If b g′ ′> , then H must be greater than 180°. So in this case H 
is replaced by 360 H−o  to remain within the range of principal values. Since 

2arccos( ) 90 arctan
sqrt(1 )

x
x

x

 
= −  − 

o . 

for principal values, the desired expression for H is derived. 
Derivation of the inverse transform proceeds using Fig. 5: 
In the RG sector, we have seen that 1S b′= − . Thus 

(1 )Bb w S= − . 
Similarly, in the GB and BR sectors, r and g are given as stated in the algorithm 
above. 

To determine another of the remaining two primaries in each sector, notice 
that for P in the RG sector, 

0 0

0

cos( ) cos( )

1 cos( )
R

R R

WQ A WP A Hr
P Q A

+ +
=  

0 0cos( )Rr w k WP A H= + + ,7 
where 0 01 ( cos( ))R Rk P Q A= . The only unknown on the right is WP  which is 
computed as follows: 

0cos( )

B

WP B H
S

WR

−
= , 

where 0 ( )R BB A P WR= . Hence 
0

0

cos( )
cos(60 ( ))
R Bw w S A H

r
A H

+ +=
− +o , 

since 0 0 60A B+ = o  and 
0

1
B

B
B

k w
w

WR
= = . 

Similarly, g and b can be derived to be as in the algorithm statement for the GB 
and BR sectors, respectively. 

Finally, since 1r g b+ + = , the remaining primary in each sector is easily ob-
tained. 

Conclusions 
The transform pair derived from the hexcone model (RGB to HSV) require 

no trigonometric or other expensive functions. Hence they are quite fast, a fact of 
considerable importance when they are to be performed at the pixel level in a 
frame buffer. For example, in the RGB paint program at NYIT there is a type of 

                                                 
7 [ 0A H−  in the original] 
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painting called tint paint. Here the user selects a color to paint with. Its tint (H 
and S) is extracted by use of the RGB to HSV transform. Now painting in a frame 
buffer can be thought of as overwriting a small 2-dimensional subset of a large 2-
dimensional array, the frame buffer, where the position of the overwriting is con-
trolled by the user with a tablet and stylus. A small 2-dimensional array called 
the brush governs this overwriting like a bit mask: Where there is a 0 in the brush, 
no overwriting occurs, but where it is non-0, the color selected by the user is 
written into the frame buffer. Tint painting is the following variation on simple 
painting: At a point (pixel) about to be written in the frame buffer, an RGB to 
HSV transform is performed to extract the value V there. A new color is formed 
from the tint the user selected and V of the pixel. An application of the HSV to 
RGB transform converts the color to usable form, and then it is written into the 
pixel. If the transforms are slow, the user can “feel” it by sluggish response of his 
brush. 

The triangle model transforms (RGB to HSL) are too slow to be used in soft-
ware form in interactive situations such as painting because of the function calls 
to sqrt(), arctan(), and cos(). It is probable, however, that approximations to these 
functions (eg, linear interpolation between values in a lookup table for cos()) 
would lead to speedier response, especially if implemented in microcode. 

An important use of the triangle model is for manipulation of the NTSC 
space. As indicated in Fig. 4, modern monitors depart somewhat from the 1953 
NTSC recommendations. The generality of the triangle model makes it a simple 
matter to obtain the RGB to HSL transform pair for the slightly different weights 
which describe a particular modern monitor [2]. A simple recalculation of con-
stants suffices. 
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Fig. 1. RGB colorcube and subcube. 
 
 

 
Fig. 2. A vector in a hexagonal disk.
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Fig. 3. Normalized color triangle. 

 
Fig. 4. 1931 chromaticity diagram showing 1953 NTSC recommended gamut 

(solid triangle) and a modern gamut (dashed). 
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Fig. 5. Computing H in the triangle model. 
 

Plate 1. RGB colorcube in IQY space (see original paper for corresponding 
color plate). 
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Plate 2. Color mixture terms. 

 

Plate 3. Loci of constant S (see original paper for corresponding color plate). 
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Plate 4. Color bar interpretation of HSV. 

 

Plate 5. V = 1/3 plane in triangle model. 


