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Shape Representation by 
Multiscale Contour Approximation 

Ann Bengtsson and Jan-Olof Eklundh 

Abstract-We present an approach for deriving qualitative descriptions 
of contours containing structures at different (unknown) scales. The 
descriptions are in terms of straight a m ,  curved arcs with sign of 
curvature, corners, and points delimiting the arcs: inflexion points and 
transitions from straight to curved. Furthermore, the tangents at these 
points are derived. 

The approach is based on the construction of a hierarchic family of 
polygons, having the scale-space property of causality: structure can only 
disappear as scale goes from fine to coarse. Using the principle that 
structures that are stable over scale represent significant properties, the 
features of the descriptive representations are then derived. 

Index Terms- Corners, hierarchic family of polygons, inflexion points, 
multiscale polygon approximations, qualitative contour description, scale 
stability, straight and curved arcs, tangent directions. 

I. INTRODUC~ON 
The goal of computational vision is to derive descriptions of a 

scene from images of it. In particular, the descriptions could be in 
terms of primitives representing the geometric structure of the world. 
There are several reasons why such descriptions are important. 

In a world of coherent objects and at the level of surfaces and 
volumes with their bounding contours, the geometric cues given by 
the contours are of paramount importance. Furthermore, geometric 
information about, e.g., the occluding boundaries of surfaces impose 
very strong restrictions on the possible structure of the scene. In fact, 
geometric features tend to be much more useful than photometric 
features in the computation of what is in the scene. This seems to be 
true for monocular and binocular scenes as well as for time-varying 
scenes, see, e.g., [1]-[6]. 

Different approaches exist to deriving geometric structure. The 
work presented here should be seen in the context when the structure 
is reflected in image curves derived from the intensity data. The 
geometric properties of such curves could be obtained by direct use 
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of the intensity information, as in the work on curve tracing and 
curvature by Zucker and his co-workers, see, e.g., [7], or by groupings 
of edge elements, see, e.g., [8]. 

Here we address problems appearing in the case that edges are 
extracted and traced, as in the work discussed, e.g., in Faugeras et al. 
[9]. Hence, we assume that there is a set of sampled contours from 
which we need to explicitly extract important shape information. Such 
structure may be straight parts of the boundaries, comers, parallelism, 
and symmetry. Information about curvature and direction is also 
important. Furthermore, surface recovery techniques may require 
parameterized boundaries. Finally, it is in many cases necessary to 
segment boundary contours into meaningful primitive parts. 

Characteristic to these problems is that the data to be considered 
are planar curves (in the images). Moreover, these curves contain 
details at various levels of scale and are also contaminated by 
noise. There exists a need for making the information given by the 
curves explicitly available for further processing by deriving some 
abstraction of them. Such a description should be much simpler than 
the given representation (which is discrete) and should not be too 
much influenced by noise or irrelevant details in the data. 

One systematic and mathematically well-founded way of finding 
such descriptions or simplified representations of curves and contours 
is to approximate them with some family of functions. We shall also 
propose an approach of that sort. However, there are two issues 
which in the standard literature on curve approximation are either 
not addressed or not given tractable solutions. First, most numerical 
techniques require that the critical points that describe the shape of 
the curve are given, at least as a subset of the breakpoints. If this 
is not the case, one might end up with hard numerical problems, 
e.g., in spline approximation with variable knots, which gives rise to 
nonlinear problems. Secondly, the methods for approximation give 
no hints on how the parameters should be set up to help us find the 
critical points. Of course, the definition of what constitutes a good 
description of a shape or a curve is application dependent, but certain 
shape features should be reliably recoverable over large parameter 
ranges. In particular, several of the computational tasks presented 
above, e.g., the check for parallelism or the computation of curvature 
and angles require both a smoothed and a precise description of 
the data. If the smoothing depends critically upon some unknown 
tolerance and scale parameters, the tasks become impossible without 
operator intervention. 

In this correspondence we present an algorithm for computing 
shape descriptions, that addresses these issues. The method is based 
on multiscale approximations with lines. A crucial first step is 
the generation of a hierarchic family of polygonal approximations. 
From this family the descriptive shape properties are derived by 
analysis of the features that are stable over scale. The principle 
used is the principle of transformational invariance, suggesting that 
structures that remain invariant under a set of transformations (here: 
smoothings), have significance. This is related to Lowe’s ideas about 
nonaccidentalness, [SI, but has no probabilistic component. As a final 
postprocessing step we also show that the polygons can be converted 
into a spline-representation. Although visually pleasing, the latter 
representation does not add any significant information about the 
abstract shape in our present framework. 

11. O N  EARLIER WORK AND OUR APPROACH 

If one wants to derive descriptions of planar curves such that 
geometric properties of the type mentioned above are explicitly 
represented, one is faced with two goals of a conflicting nature. First 
there is a need for finding a qualitative description of overall shape. 
Hence some simplification and/or smoothing must take place. This 
goal is important for recognition and for finding global structure. 
Secondly, there is a need for high precision detection of certain 
characteristics. Earlier we mentioned straight line segments, comers, 
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angles, parallelism, and symmetry and their projections from 3- 
to 2-D. Recent work on shape and image structures has been 
addressing these problems by investigating multiscale representations. 
Based on early work on multiscale descriptions, e.g., Rosenfeld 
and Thurston [lo], Witkin [ l l ] ,  introduced the notion of scale- 
space representation. In this approach one considers a one-parameter 
family of representations of a shape, ihe parameter being scale. 
Witkin suggests that one first smoothes the signal with a mask of 
variable size and then looks for structures which are stable over scale. 
Particular emphasis is given the problem of tracking the structures 
as the scale varies from coarse to fine. Later this problem has 
been given more precise solutions for image contours [12], [13]. 
Witkin [ll] looked at waveforms but the approach applies to planar 
contours in general. Mokhtarian and Mackworth [14], use Gaussian 
smoothing in this case. However, they smoothed the coordinate 
functions separately, which led to some unreasonable effects. In [15] 
they tried to avoid these by renormalizing the curvature. However, 
the Gaussian smoothing has the effect of shrinking closed convex 
curves. Lowe [16] suggested a compensational mechanism for this 
problem. 

An important aspect of this approach is that the smoothing is 
indiscriminate: one applies the smoothing independently of the struc- 
ture of the original data. As a consequence important geometric 
features like comers and intersecting lines-indicating 3-D structure 
like occlusion or parallelism and collinearity- are represented only 
implicitly. At the coarser levels they occur in blurred form and hence 
lack the characteristic properties. At the finer levels, the geometry is 
more precise but the structure is hard to find since it is represented 
with a lot of fine details and noise. The precise description of a comer, 
a junction or a linear part of the boundary may never exist at any level 
of scale. The fact that one can filter out stable representations over 
scale (Witkin [ l l ] )  does not solve the problem. We need to remove 
unnecessary detail without destroying localization accuracy. 

An attempt to attain this goal using a diffusion process is made in 
Kimia [17]; see also Kimia et al. [18]. Without contending that these 
general smoothing approaches cannot be applied to compute shape 
descriptions, we have taken an alternative approach to the problem 
which preserves geometric precision in a straightforward manner and 
derives explicit descriptions in terms of a set of shape descriptions. 
The approach is based on multiscale approximations with polygons. 
Mechanisms for detecting significant geometric events, like comers, 
changes from straight to curved segments, etc., are built into the 
procedure. In fact, our approach in that respect has some kinship 
with the method proposed by Fischler and Bolles [19]. They address 
a different problem, but also try to detect the different processes that 
may account for variations along a contour. However, considerations 
about fine details, noise, and reconstruction of geometric properties 
is outside the scope of their paper. 

To summarize, the purpose of this work is not just to smooth 
the curve, but rather to derive a description of it in terms of 
a set of primitives. Furthermore, this description should capture 
the (intuitive) shape features of the curve, which are assumed 
to be apparent at the certain (unknown) scales. These scales are 
those at which the description remains stable as scale as varied, as 
proposed by Witkin [ll]. Our approach here to this problem uses 
polygonal approximation. The descriptive primitives are qualitative: 
straight arcs, curved arcs with sign of curvature, comers (tangent 
discontinuities), and points delimiting the arcs, especially inflexion 
points. Beside these primitives we also derive the tangents at the 
obtained points, i.e., inflexions, comers (two tangents) and transitions 
from straight to curved. 

Lindeberg and Weiss [20] argued that a well-behaved shape pre- 
serving curve smoothing scheme should have the following proper- 
ties. 

Fine scale features should disappear before coarse scale features. 
A circle should not shrink (too much). 
A jagged curve should not grow or shrink (too much). 
A simple curve should remain simple. 
A closed curve should remain closed. 

The number of inflexion points should not increase, implying 
that no new singularities should be introduced in the Gauss map. 
The number of curvature extrema should not increase. 

Our method satisfies all these properties except that there is no 
control over the curvature extrema. Empirically, it seems to fulfill 
also this condition. 

We shall next describe this method in the following steps. First 
we shall present our basic polygonal approximation method. Using 
this algorithm we next show how the hierarchic family of polygon 
approximations is created. Finally we demonstrate how the descrip- 
tive primitives can be derived from this family. Some examples and 
an indication of how a spline-approximation can be performed as a 
postprocessing step complete our correspondence. 

111. A N  ALGORITHM FOR COARSE-TO-FINE POLYGON APPROXIMATION 

We shall in this section briefly describe a polygonal approximation 
algorithm which depends on only one variable and which gives 
coarse-to-fine representations of a contour, as this variable is varied. 
The algorithm is derived in [21] by a careful consideration of different 
design criteria proposed in the literature and how they meet the goals 
of this work. Before we find the multiscale approximations, we first 
need a suitable one level algorithm. To this end we consider some 
existing approaches and keep in mind that our aim is to represent 
image contours. 

A.  Motivations 
Numerous techniques for fitting polygons to curves have been 

suggested. Pure interpolation techniques dominate, but true approxi- 
mation schemes have also been proposed. In [21] we made an 
argument for the use of an interpolation scheme, primarily on the 
basis that curves obtained by edge detection followed by contour 
tracing will be sampled densely and rather uniformly in arc length. 

In [21] there is a detailed analysis of the requirements on a polygon 
approximation algorithm in general and on one that could be used 
to create a multiscale shape representation in particular. The main 
conclusions of the analysis can be stated as follows. 

A split-and-merge technique can be used. 
Collinearity tests should be based on both the maximum error e 
and on the ratio of the absolute value of the accumulated signed 
area the curve defines with respect to the line and the length of 
the line IAILI. 
The maximum error tests can be used in the split step, the test 
on signed area over length in the merge step, and multiples of 
the same threshold can be used; see below for an explanation. 
For efficiency reasons, the step size in the split step should be 
adapted so that it accounts for the variability of the data as well 
as possible. In principle, one starts with a large step, decreases 
it when the collinearity test fails (splits), increases it when the 
test succeeds; see [21] for details. 

B. A Proposed Algorithm for Polygonal Approximation 
As a consequence of these arguments, an algorithm embodying the 

features proposed above has been developed. This algorithm is of the 
split-and-merge type. It can in short be described as follows. 

1) The collinearity tests are of the form e si t. The error e is the 
distance to the line segment and not the distance to the line. 
Modifications of t depending on the relative number of sign 
changes are optional. 

2) The merge tests are of the form (AIL1 s t/2 and the area is 
accumulated in case of successive merges. The same threshold 
t is used, implying conservative merges. See the next section. 

3) The step size is adaptively modified. 
Two things can be noted about this algorithm: 

It checks both the maximum error e and the signed swept area 
A .  The arguments for these tests have been given earlier. 
A multiple of the same threshold t is used in the split and in the 
merge tests. This may not be ideal in a one-step algorithm, but 
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works well in our multiscale approach. For curve segments that 
project orthogonally onto the line segment a merge will indeed 
be performed if e c t, in particular if e is very small. Moreover, 
the use of t/2 ensures that if a merge is performed in the convex 
case, then e s t. (In fact, we have also used the threshold t with 
good results, even though this may lead to merges also when 
e > t). 

This concludes our description of the principles of the algorithm 
used at one specific scale level. The exact algorithm depends to a 
certain degree on the earlier levels. We shall next describe this. 

C. The Multiscale Algorithm 
The algorithm just outlined is well suited for building up a 

hierarchical family of polygon approximations that exhibits the scale- 
space property of causality and of not introducing any new structure. 
Witkin [11] noted that the fingerprints, the contours tracing out the 
occurring idexion points over scale, could serve as a basis for 
description over all scales. ' h o  assumptions were made as follows. 

1) Identity: W O  extrema at different scales but on the same zero- 
contour (of &) in 1-D, F(")  being the signal blurred with 
a Gaussian with s.d. U )  in scale space emanate from a single 
underlying event. 

2) Localization: The true localization of an event (zero-contour) 
is the localization obtained as U + 0. 

In our case we apply these assumptions at each approximation 
level, that is we perform the tracking as we build up the set of 
descriptions at varying scale. 

In principle, we proceed as follows. First all the necessary splits 
are performed, so that segments satisfying the collinearity criterion 
are found. After each successful split operation, identification and 
localization are made by a search in scale-space. New breakpoints, 
not appearing at finer scales, can occur but are then inserted also at 
the finer levels. When the contour is processed in its entirety in this 
way, a merge step is performed to give a representation at the current 
scale level. We note that the mentioned insertion of new points may 
add some breakpoints to this representation in the final result. 

More precisely, the algorithm runs in the following way. 
Given a discrete contour P = { p ,  I i = 1, . . . , N } ,  the scale levels 

are defined by 

E" = s '  A€, s = O,...S . 
The approximating polygon at level s is P(") = {p i")  I i = 
1,. . I d " ) } ,  s = 0, 

P(O) for all s. 
Therefore, P(O) induces an order on all the points { p ;  I i = 1, . . , N } .  
We shall use the terms preceding and succeeding points with reference 
to this order. 

We assume that at any given step of the algorithm described below 
the step size is well-defined. It can, for example, be given as a fixed 
output value or adaptively computed. For simplicity we shall omit 
the specification of the step size in the description of the different 
parts of the algorithm. 
In the algorithm at level s we first perform a split step, computing 

a polygon 

, S. In particular, we identify P(O) with P. 
Since the algorithm uses interpolation, P(') 

From this polygon P(') is computed by a merge step. The procedure 
is the following. 

Assume that the points {q?) I i = 1, . , I} have been computed. 
The error is E(') and the step size is given. Let p ,  = q y )  be the left 
endpoint of our next line segment. 

1) Use the given step size to find a new right endpoint pr .  
2)  Test for collinearity between pi and p r ,  error 8). 
3) If 2)  fails, do a split and find a new right endpoint pr .  Go to 2). 
4) If 2) succeeds, find the rightmost point in T!") = { P I " )  I 0 < 

t < s , p p )  succeeds p,.} that satisfies the collinearity test 

together with pi and with error E('). If there is such a point 
define it to be qyjl and to to 7). 
If 4) fails, do an analogous test for Tp) = { p r )  I 0 < t < 
s , p f )  succeeds p t  and precedes p,.} .  If a point is found go to 

If 5) also fails, define &J1 as p.. 
Insert qyj ,  as a point in P ( t ) , t  < s, unless it is already 

7). 

included. ' 
Compute the signed area a(,.) of the triangle q ~ l l q p ) q y ~ l  and 
save l a y ) / l f ) l  if it is c E('), where Z(,.) = d(qpll, &j1). 
Given Q('),- perform a merge test using the parameter (A/lI 
introduced above. This results in P@), a (tentative) polygon 
approximation at level s. 

The tentativeness depends on the fact that 7) can modify P(') later. 
A remark can be made about the implementation of 9). For 

efficiency the signed area, a(,.), of the triangle p y ~ l q ~ ) q y j ,  is 
computed upon the localization of q + l .  The point q?) is then marked 
for a possible merge if l a ~ ) / Z ~ ) l  5 E('). The marked points are 
ordered with respect to the increasing values of the test parameter. 
The merge test is then performed in this order. The test parameters 
are recomputed as points are removed so that they represent the 
appropriate values. This procedure may imply that merges that could 
have been made at level s (on the basis of the error criterion) are 
never considered. However, this will be remedied at higher levels. 

We have now presented an algorithm for multiscale polygon fitting 
which produces the polygons {P(") 1 s = 0, . . , S}. This set of 
polygons form a coarse-to-fine representation of the input contour 
and gives as such a description of its shape. If we want to draw 
conclusions about the shape like those listed in the introduction, 
we need to filter out the important features of the description. Of 
particular interest are the descriptions which are maximally stable 
over scale. We shall call it the scale-invariant description in the 
interval [O,S]. In a sense this shape description is obtained without 
resort to any arbitrarily chosen parameters. In [22] we gave examples 
of such descriptions. 

However, there are certain limitations to such scale-invariant 
descriptions. If the contour is a noisy version of a polygon with 
its dominating structures at roughly one scale level, then the scale- 
invariant description is good. If, on the other hand, different structures 
occur at different scales and, moreover, if the contour is curved, 
then the stable as well as the unstable parts of the scale-space 
representation are indicative of the structure of the contour. We shall 
now show how the family of polygon approximations over scale can 
be used to derive a shape preserving representation. 

Iv. DERIVING THE STABLE SHAPE FEATURES 
In this section we will present the method for deriving the stable 

descriptions of the curves, or rather the features contained in these 
descriptions, on the basis of the family of polygons found by the 
technique described in the previous section. 

Hence, we assume that we initially have a curve, given as an 

(za, ya), where N is a fairly large number, typically 100 s N s 10 000. 
From PO and a tolerance step E ,  which could be the grid resolution, 
we derive a set of polygon approximations,' {Pi I i = 1,. . . , S}, 
where PO 2 PI 2 . . . 2 Ps-1 2 P , ,  and Pk is a polygon within 
tolerance kc from PO. We will also show how for each Pk the family of 
polygons can be used to construct a polygon Qk with the same level 
of detail as 4, but more similar in shape to the contour at hand. 
In fact, the polygons Qk are in [23] used to produce spline 

approximations. However, the goal here is to derive descriptive 
shape features that are stable over scale, not just a perceptually 
pleasing approximation. Hence we proceed by, from polygon Qk, 

characterizing the points and segments of the curve as comers, 

'In the preceding section P(s) denoted a polygon at level s. From now on 

ordered set of points in the plane, PO = { p a  I i = 1,- . . , N } , P :  = 

Ps denotes a polygon at level s. 
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straight segments and curved segments. The curved segments are 
divided at points of inflexion into arcs of positive and negative 
curvature. Finally, the tangents at inflexion points and corners are 
estimated. In this computation all the data in PO are used. The 
procedure can be summarized in the following steps. 

1) Choose a scale, i.e., an integer value k, that is stable. 
2) At the chosen scale k, find corner points and segment the 

3) Find the positions of the inflexion points of the curved parts 

4) The tangent values at comers and inflexion points are estimated. 
We will next describe these steps. 

contour into straight curved parts. 

of the contour. 

A. Detecting Stable Scales 
In his work on scale space, Witkin [ll] suggested that those 

features of the signals he studied that tended to leap out at the 
eye were such features that showed stability over scale, i.e. the 
features existed over a broader scale interval than other features (at 
the same locations). Scale in our case corresponds to the number k, 
as polygon Pk is computed with tolerance h. In line with the ideas 
of Witkin, and as a consequence of the argument made in Section I, 
we consider the number of inflexion points of the polygons from 
the family versus scale, that is the tolerance ke. An inflexion point 
of a polygon is defined as in Fig. 1. A stable scale is a plateau of 
this function; see Fig. 2 for an example. Note that these plateaus 
can be ranked using their lifelength (width) and that no threshold 
actually is needed. In practice we are however only interested in 
the most prominent stable scales, and therefore a threshold is used. 
Possibly the plateaus are not completely flat, which could imply the 
use of a second threshold. However, this has not been required in 
the examples given here. 

B. Corners, Straight and Curved Parts 
Let k denote a number where ke belongs to a stable tolerance 

interval. At this scale, segmentation of the contour into straight 
and curved parts and identification of corner points will be made. 
Essentially, straight parts of the contour will be represented with 
lines in the polygon that are longer than those lines that constitute the 
curved parts. Furthermore, polygon segments in parts of the contour 
that are mainly straight at level k will be more stable over scale 
with respect to the number of points than will the lines of the curved 
parts. These observations are the basis for the segmentation procedure 
which goes as follows. As in [21] we start with the polygon Pk and 
from this we make a new polygon Qk by descending hierarchy of 
polygons d levels and replacing the representation of a segment with 
its lower level representation as long as no inflexion points are added 
to the contour. The polygon so constructed will essentially represent 
the same shape as Pk does but the properties of the line lengths will 
be more emphasized in Qk. 

The lengths of all segments are computed and checked in the 
following way. Segments longer than Cke are labeled as straight. 
Let 11 and 12 be the lengths of two consecutive segments. Additional 
straight parts are defined as the longer of 11 and 12 where 11/12 c r or 
11/12 > l / r .  The values of C and r used in our examples below are 
C = 8 and r = 5 .  Points separating straight parts are corner points. 
Also points with sharp vertex angles, typically v c 70°, are labeled 
comer points. 

The comer points and the points where our representation changes 
from straight to curved are called break points. The position of a 
comer point is obvious but the position of a breakpoint between 
straight and w e d  segments is not. However, we have chosen to 
use a point on the long polygon segment in this way: let 11 and 
12 be the lengths of the longer and shorter segments, respectively. 
The breakpoint is chosen as the point on the long segment located a 
distance h/2  from the vertex point, thus allowing the curved part to 
extend a little into the straight segment. This is incidentally useful if 
one wants to produce a smooth looking approximation later on. 

Fig. 1. An inner segment of the polygon is an inflexion segment ( i )  if the 
vertex angles at the segments endpoints are on different sides of 180’. 

“1 

100 

SO 

60 

40 

20 

Fig. 2. The leftmost contour consists of about 200 points and it contains 
some noise. A family of polygons with this contour as PO is constructed. The 
number of points of these polygons versus scale is shown in the left graph 
and the number of inflexions versus scale in the right graph. In the latter, 
the two widest plateaus are easily seen. They correspond to the two most 
stable polygons with 24 and 4 inflexions, respectively (middle and rightmost 
contours). 

C. Positions of Inflexion Points 
In Section IV-B we showed how to find the positions of two kinds 

of breakpoints, corners, and points where straight and curved parts 
join. A third kind of points that we wish to locate are the points of 
inflexion. 

The simplest way to estimate the position of an inflexion point 
from a polygon is to use the coordinates of the midpoint of the 
inflexion segment (Fig. 1). If we use this simple method on a 
polygon Qk constructed as described earlier, using points from 
Pk,Pk-I,**‘,Pk-d, we will in most cases get a more accurate 
position than we get from Pk. (If the inflexion segment is short, 
the position of the point is known with better accuracy than if the 
segment is long.) In some cases, however, the inflexion segment will 
be the same or almost the same in Qk and Pa. Then, an alternative 
procedure is applied. We compute the positions of the inflexion 
points at a number of scales, according to the simple rule above. 
Then, we match these points over scale in consistent way, in order 
to connect the inflexions of Pk to inflexions of Pk-d, which will 
be better localized. The idea behind this procedure is that features 
observed at a coarse scale always have their origin at a finer scale 
(cf. the identity assumption of Section 111-C used for the polygon 
approximation scheme). The following three observations are used in 
the matching procedure. 

1) As we move from fine to coarser scale (increasing k), the 
level of detail must decrease and structure must not be created. 
Globally, this means that the total number of inflexion points of 
the polygon will decrease. Locally, it means that two inflexion 
points at a coarser scale cannot be matched to a single point 
at finer scale. 

2) When we match inflexion points from polygons Pk and Pk+l, 
some points of pk will remain unmatched if the number of 
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inflexion points is larger in Pk than in Pk+l. We say that 
inflexion points disappear when we move from fine to coarse 
scale. For closed polygons, the disappearing inflexion points 
will always be neighboring pairs. 

3) For open curves, the inflexion points closest to the ends of the 
curve may disappear as singletons while inner points behave 
as if they belonged to a closed curve. 

Let the finest scale used be kf = k - d .  Start with this scale and 
the nearest coarser, kf + 1. First we find exact matches of inflexion 
points between the two scales. For an exact match we demand that 
the endpoints of the inflexion segments shall be identical at the two 
levels. Then, we try to match the lists of inflexion points from the 
two levels in the regions between the exactly matching points. For 
each inflexion point i at scale kf + 1 that has not been matched 
exactly, we set up a list of matching candidates from level kf. This 
list consists of two inflexion points at level kf that are closest in arc 
length to i followed by the two points that are closest in Euclidean 
distance (often, these points overlap, so the candidate list has only 
two or three points). We create an initial match by combining each 
inflexion point at level kf + 1 with the f is t  point in its candidate list. 
If this matching is consistent with the conditions 1)-3) we accept this 
matching and proceed to match inflexion points from levels kf + 1 
and kf + 2. If the matching is not consistent in some region, we will 
try the rest of the points from the candidate list for each inflexion at 
level kf + 1. It is done in a simple and systematic way, trying each 
possible combination of matches from the candidate lists and trying 
to use points from the beginning of the list first. Three problems can 
be foreseen with this procedure. First, the naive approach to try all 
possible combinations could give rise to a combinatorial explosion 
and thus be very time consuming. The second problem is that we may 
be unable to find a solution with the points from the candidate lists. In 
our examples, the first problem does not occur because we use such 
a small tolerance step E, implying that polygons at consecutive scales 
are close. This means that they have many points in common which 
leads to a large number of exact matches and few inflexion points 
in the lists we have to match. Regarding the second problem, the 
solution of that would simply be to use longer candidate lists. This 
problem has not been encountered in our examples. A third problem 
that we have not considered is that the solution we get may not be 
unique. We just accept the first match that is consistent with our rules 
and we do not know if there are other consistent solutions. 

D. Estimation of Tangents 
Given a point at or close to a noisy contour, we wish to find a 

tangent value that approximates the tangent of the contour near or at 
the point. The polygon approximations we work with are in a sense 
coarse approximations of tangents to the noisy curve, but although 
we have good polygon approximations, the lines of the polygons are 
not good as tangents to the contour at the breakpoints. A very simple 
way of computing a tangent at a point is to fit a straight line to data 
in a neighborhood of the point, e.g., by using the method of least 
squares. However, the best fitting straight line will in many cases not 
have the slope that one would intuitively think is the right tangent. 
We believe that higher order approximations are better suited to find 
correct tangent values. Below, we show the three situations, where 
we fit tangents to data and then we will describe the procedure used 
in each case. 

Case 1: Comers. 
Here, we have different tangents on the different sides of the comer 

point. When the right (left) tangent is computed we will only use data 
to the right (left) of the comer. A straight line fit is not sufficient to 
catch the slope of a curve near a comer point as seen in Fig. 3. 

If very few data close to the interesting point were used to fit the 
line, the result might be better, but it would be highly dependent on 
the amount of noise in PO. As the noise level is expected to be large 
in most cases, this method will be very unstable. 

Case 2: Inflexion points. 
In this case, we will use data on both sides of the point at which 

we wish to find the tangent. Also in this case, fitting of a straight line 

Fig. 3. Least squares fit of a straight line to part of a noisy curve. Although 
the curve is approximated reasonably well by the line, the tangent of the 
comer point is not. See Fig. 7 for a better result. 

is not good enough. Reasons are the same as in Case 1. 
Case 3: Smooth breakpoints without change in the sign of curva- 

ture. 
In this case, a straight line approximation may give a good tangent 

value. 
In Cases 1 and 3 we have data representing a curve with a constant 

sign of curvature, i.e., no inflexion points are present (at the level of 
scale we have chosen). In these cases we fit second order polynomials 
to data and take the tangents of these polynomials at or near the 
breakpoints as approximate tangents to the contour. 

In Case 2, second order polynomials are not suitable. Here we know 
that data represent a contour with an inflexion point. As second order 
polynomials have no inflexion points we will not use them in this 
case but try with polynomials of degree 3 instead. 

Note that the approximations by second and third order polynomi- 
als are used only for tangent estimation, not for curve representation. 

Approximation Method: The data we wish to approximate with 
polynomials are a number of points in the xy-plane: { (zl, yl); i = 
0,1,. . . , m}. However, we will not try to fit y as a function of x 
(or vice versa) as we cannot expect our data to behave like such a 
function and we desire an approximation method that is independent 
of how the contour is rotated in the ny-plane. 

The way to solve this problem is to introduce a parameter t, and 
let x and y depend on this parameter. For each point (xl, yI) a value 
tl is chosen in such a way that tl increases monotonically with i .  
Then functions can be fitted to { (z* , t , ) ;  i = 0, l , . . .  ,m} and 
{(yl, t , );  i = 0,1,. ,m} independently by the ordinary method 
of least squares. These functions will be independent of how the 
data are rotated in the xy-plane in the sense that if all data points 
X I  = ( ~ , , y , ) ~  are rotated by a standard 2 by 2 rotation matrix R, 
i.e., each X is replaced with X'  = R X ,  then this corresponds to 
the same rotation of the approximating functions: X & ( t )  = R X * ( t ) .  
X * ( t )  = (z*(t),y*(t))T is the solution obtained when we fit our 
set of basis functions to the original non-rotated data. X & ( t )  is the 
solution to the same problem but using data rotated with matrix R. 
A proof of this can be found in Bengtsson [23]. 

The simplest way to set the values of the parameter t is to let it 
vary equidistantly, i.e., let t, = i or t ,  = i/m where i = 0,1, + , m. 
However, it has been shown in experiments (de Boor [24]) that if 
distances between consecutive data points vary much along the curve, 
this kind of parameterization can give rise to unpleasant and quite 
unexpected features, such as loops, in the approximating curve. To 
avoid such problems, we let the values of the parameter t depend on 
the distances between data points, the arc lengths in our raw data PO. 

Let 

do = 0. 

d; = d(r;  - q - 1 ) '  + (y; - y;-1)', 

D = cm *=l d;. 

t o  = 0. 

i = 1,2, ... ,m. 

Now, we have {(ri , t , ) , (y , , t*);  i = O,l,...,m}, where the 
parameter t ranges from t o  = 0.0 to t ,  = 1.0 and small steps in 
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t mean that data points are close. Polynomials of order 2 or 3, the 
order depending on which of the cases we have, will be fitted to 
r(t) and y(t) independently. The method of least squares is used in 
a standard way, with QR-factorization of the coefficient matrix. 

' b o  slightly different polynomial expressions have been tested in 
the second order case as well as in the third order case. Let t, denote 
the parameter value of the point where we seek the tangent. The dot 
above x and y stands for derivative with respect to t. 

In the second order case, the first type of approach is to assume 
that we know that the polynomial we fit must pass through the point 
(z,, y,) .= (z(tc), y(tc)). The second approach is to make no such 
assumption, we just wish to find the tangent in a neighborhood of 
(zc, yc). With the first approach we fit the two parameters in each 
of the polynomials 

z*(t) = z c  + a1(t - t,) + az(t - t C ) Z  

and 

and with the second approach, three parameters per polynomial are 
needed. We fit 

z*(t) = a0 + a1t + azt2 

and 

y * ( t )  = bo + bit  + b2t2. 

The results of the two approaches were essentially the same in 
the sense that the shapes of the approximating curves based on the 
tangents computed from these polynomials were very similar. 

In the third order case, the first approach is to require the poly- 
nomial to pass through the point (zc, y,) and to have zero curvature 
at this point. The last requirement leads to a minimization problem 
with nonlinear constraints. To avoid this we made a simplification. 
Essentially, zero curvature at tc is equivalent to 5g - $2 = 0 at t,. 
We require 2(tc) = y(tc) = 0 which is not absolutely necessary for 
zero curvature but gives the ordinary and simple kind of minimization 
problem. The polynomials to fit in this case are 

z*(t) = z c  + a1(t - t,) + a3(t - t c ) 3  
and 

y*(t) = Yc + b l ( t  - tc )  + b3(t - tc)3.  
The second kind of approach is to fit the third order polynomials 

without constraints and compute the tangent close to (z,, y,). 

z*(t) = a0 + a1t + a2t2 + a3t3 

and 

y * ( t )  = bo + b i t  + bzt2 + b3t3. 

In the first approach we compute two parameters for each polyno- 
mial and with the second approach four parameters per polynomial 
are necessary. We found that the two-parameter method was more 
robust with respect to changes in the number of points used in the 
fitting procedure and therefore more reliable. 

When the polynomials ( z * ( t ) , y * ( t ) )  are computed, we take the 
derivatives of these polynomials at the point t = t,, (5*(tc),  $ * ( L ) ) ~ ,  
as an estimate of the tangent, see [23]. We will only use the direction 
of this vector, not its absolute value. 

To perform the computations we have to choose the points to use in 
the least square fit. The number of points should in some way depend 
on the chosen scale. The actual dependency is not obvious but it is 
reasonable that on a fine scale we will use fewer points (or at least a 
smaller part of the contour) than on a coarse scale. We will assume 
that our possible scales will be above the noise level and as we stated 
earlier, in the presence of noise, we must not use too few points. 
The absolute minimum is 2-4 points (depending on which case we 
have), meaning interpolation by the chosen kind of polynomial. The 

Fig. 4. A noisy polygonal contour and the corresponding most stable 
polygon. 

maximum is set by the following argument. When approximating the 
tangent in one breakpoint, we will not use data points beyond any 
adjacent breakpoint (at the current scale). This is reasonable because a 
breakpoint indicates a significant shape-change and a specific tangent 
value should only depend on the two curved shape elements adjacent 
to it (one in the case of a comer tangent). In our experiments, we 
let the algorithm start with between 10 and 20 points and reduce 
this number, if necessary, according to the argument above. It is also 
reasonable that the total curvature of the contour corresponding to 
the chosen m t 1 points is not too large. 

When comer tangents are computed, the m t 1 points are chosen 
from just one side of the comer point. In the other two smooth cases, 
we try to choose the points symmetrically around the breakpoint. 

E. Summary 
The four previous subsections described the steps of the procedure 

outlined at the beginning of Section IV. We will next demonstrate the 
performance of the entire method, including the multiscale polygon 
approximation, on some examples. 

v. RESULTS 

In Fig. 2 the detection of stable scales is illustrated. It is notable that 
the obtained polygons represent the shape reasonably well in this w e  
where the noise level is low. If we take a noisy but simple polygonal 
shape, like the arrow in Fig. 4, then the most stable representation will 
be a scale invariant polygon for a very large scale interval. In fact, 
from the noisy arrow, containing 696 points on a 1000 x 1000 grid, 
the 7 arcs and comers are obtained if S = k,, is allowed to be over 
200. More interesting is, of course, the case when the shape contains 
straight and curved arcs. This is the case in Fig. 5(a), containing 
an image of the letter B, represented as three curves on a grid of 
lo00 x 1000 points. The width of the letter is about 606 (E = the 
grid increment) and the corresponding scale interval is considered. In 
this interval there is one stable scale. ' b o  straight parts are at this 
scale the left vertical part of the entire letter and of the upper hole. 
The lower hole is not found to be straight. The tangents found at the 
comers are indicated in the figures, as well as some other estimated 
tangents. These are used in an algorithm for fitting conic splines, 
using the so-called guided form for conics; see Pavlidis [25] and 
Bengtsson [23]. We will not describe this method here, since it does 
not refine the qualitative description we are deriving here. However, 
the output of this algorithm, which is seen in Fig. 5(c), illustrates the 
classification into straight and curved segments. 

It should be noted that in Figs. 5-8, the estimated tangents are 
drawn symmetrically around their corresponding breakpoint. 

Fig. 6 shows a noisy pear-like figure with some estimated tan- 
gents, especially at the inflexions, at the most stable scale. Again a 
postprocessed spline version is also shown. 

Another example is shown in Fig. 7. Here we especially see the 
result obtained by application of the tangent estimation technique in 
Fig. 1, as opposed to a direct fit as shown in Fig. 3. In this case as 
well as for the regularly patterned figure in Fig. 8, we obtain two 
straight and one curved arc, and this description again occurs at the 
most stable scale. 

In all these examples there is one outstanding stable scale. That 
is not the case in Fig. 9(a), taken from Fischler and Bolles [19] but 
with positional noise added. Again we use our spline approximation 
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Fig. 5. (a) Original noisy contour. @) Estimated tangents. No tangents are indicated at the straight segments. First, tangents at corners and inflexion 
points (none present here) are computed. Later, during the curve fitting procedure, additional tangents are computed. All these tangents are shown in 
the figure. (c& Conic spline representation illustrating the labeling. 

Fig. 6. A noisy pear-like shape. The only stable polygon has four inflexions. The tangents at the inflexion points are drawn along with the additional 
tangents required by the spline procedure. The rightmost shape shows the final approximation. 

algorithm to illustrate which arcs are labeled as straight and curved 
[see Fig. 9@)] when the most stable scale up to a level of 406 is 
considered (the original contains 496 points). (In this early experiment 
the stability was defined by the number of points versus scale.) It can 
be seen that the final output is intuitively reasonable. The right part 
of the wavelike pattem is labelled as built up by straight part, but 
this is plausible from the noisy original. For a less noisy version, 
Fig. 9(c), we obtain an intuitively correct result, Fig. 9(d). 

VI. SUMMARY AND DISCUSSION 
We have presented an approach for deriving qualitative descriptions 

of contours that contain structures at different (unknown) scales. 
The descriptions are in terms of straight arcs, curved arcs with 
sign of curvature, comers and points delimiting the arcs: inflexion 
points and transitions from straight to curved. Besides this, the 
tangents at these points are also derived (one-sided in the appropriate 
cases). 

The method is based on the derivation of a multiscale, hierarchic 
family of polygon approximations, which satisfies intuitive criteria 
for curve smoothing, like those suggested by Lindeberg and Weiss 
[20]. It uses stability over scale as a criterion for selecting significant 
structures, as is prescribed by scale-space theory. The family of 
polygons allows a classification of the arcs and localization of 
inflexions and a polynomial approximation step is used to derive 
tangents. 

Examples with noisy line drawings show that the method allows 
computation of intuitive shape features robustly, at least if the 
resolution in the sampling of the curve is sufficient. 

A number of problems are however yet not investigated. For 
instance, we have not studied if scale should be transformed to 
allow proper comparisons over scale. In Lindeberg and Eklundh 
[26] it is shown that for the scale-space embeddings according 
to the diffusion equation such transformations are needed. In our 
experiment they seem to be supe~uous, since mainly only two scales 
occur globally. This indicates, in fact, that future experiments should 
be performed on true edge data from realistic images containing 
structures at many different salient scales. We are also working 
on such problems. However, the problem of properly tracing and 
segmenting the contours must then also be solved. Our current belief 
is that these problems should be solved in a closed feedback loop 
and not in a one-pass procedure, as is commonly done. Hence, 
the segmentation and description steps should be coupled through 
feedback, in analogy to any segmentation and interpretation process. 
Our current work is pursuing this approach and we think that the 
applicability of our approach to difficult realistic imagery can only 
be verified in such a framework. 

In spite of these open questions we believe that our method 
is robust and gives appropriate results. Hence, it can serve as a 
preprocessing to other processes for computing geometric structure 
and groupings, such as, e.g., proposed by Ulupinar and Nevatia [27], 
or for an approximation with some set of functions that parameterizes 
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Fig. 7. For this jagged quarter circle, the only stable shape is the one with two straight parts and one curved part. The estimated tangents are drawn 
directly on the original noisy contour to the left and to the right is the final approximation. 

Fig. 8. A slightly different version of the same pattern. Again good tangent estimates are found. We note that our algorithm has not chosen the comer 
breakpoints symmetrically. The top-left comer is on the inside of the curved part and the bottom-right comer is on the outside. 

(d (d) 
Fig. 9. (a) The figure from Fischler and Bolles [19], noisy version. @) Final 
result, the most stable representation up to &, using conic splines for the 
curved arcs. (c) Less noisy original. (d) Final result with (c) as input. 

the contour in a suitable way. 
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