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Video Partitioning by Temporal Slice Coherency
Chong-Wah Ngo, Ting-Chuen Pong, and Roland T. Chin

Abstract—We present a novel approach for video partitioning
by detecting three essential types of camera breaks, namely cuts,
wipes, and dissolves. The approach is based on the analysis of tem-
poral slices which are extracted from the video by slicing through
the sequence of video frames and collecting temporal signatures.
Each of these slices contains both spatial and temporal information
from which coherent regions are indicative of uninterrupted video
partitions separated by camera breaks. Properties could further
be extracted from the slice for both the detection and classifica-
tion of camera breaks. For example, cut and wipes are detected by
color-texture properties, while dissolves are detected by statistical
characteristics. The approach has been tested by extensive experi-
ments.

Index Terms—Cut detection, color-texture segmentation, dis-
solve detection, spatio-temporal pattern, spatio-temporal slice,
video partitioning, wipe detection.

I. INTRODUCTION

A VIDEO can be partitioned into shots; a shot is an uninter-
rupted segment of video frame sequence of time, space,

and graphical configurations [5]. The boundary between two
shots is called a camera break (or video edit). Due to the advance
of video production technology, various type of video edits can
be easily created to indicate the change of space and time, or to
highlight important events. For instance, sport videos often use
a special-effect edit between the live footage and instant-replay
to intensify impression. Therefore, by detecting, as well as clas-
sifying, camera breaks, we can facilitate the content analysis,
indexing, and browsing of video data, and in addition, reduce
video retrieval problems to image (or key-frame) retrieval prob-
lems.

Based on the transitional properties of video edits, there are
three major types of camera breaks:cut, wipe, anddissolve. A
camera cut is an instantaneous change from one shot to another;
a wipe is a moving transition of a frame (or a pattern) across
the screen that enables one shot to gradually replace another;
and a dissolve superimposes two shots where one shot gradually
appears while the other fades out slowly. Fig. 1 shows examples
of the three types of camera breaks. Since frames located at the
boundaries of wipe or dissolve can not represent the content of
a shot, in principle, it is necessary to separate those frames from
shots.

In the current literature, there are various algorithms for de-
tecting camera breaks. Work on camera-cut detection include
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[9]–[11], [13], [18], [19], [21], wipe detection include [2], [12],
[16], and dissolve detection include [3], [10], [12], [19], [21].
Wipes and dissolves involve gradual transitions with no drastic
changes between two consecutive frames, and hence, are rela-
tively difficult to identify. While cuts can be identified by com-
paring two adjacent frames, wipes and dissolves require the in-
vestigation of frames along a larger temporal scale.

In general, most cut detection algorithms can segment a video
into shots accurately if the sequence has smooth within-shot
frame transitions and abrupt between-shot spatial changes. The
speed efficiency of these algorithms are normally improved by
either processing in the compressed domain (e.g., MPEG) [10],
[11], [19], [21] or sub-sampling of the spatial and temporal of
video frames [18]. Features extracted from the compressed do-
main are rich in both global and local properties and are ideal for
cut detection. On the contrary, the video sub-sampling scheme
depends on the spatial window size and the temporal sub-sam-
pling rate. and has shown to be sensitive to object and camera
motions.

Although there exists many cut detection algorithms, there
are relatively few wipe- and dissolve detection algorithms pro-
posed in the literature. Wuet al. [16] proposed the projected
pairwise difference deviation to detect wipes. However, it can
only handle very limited, yet simple, wipe patterns. Alattar [2]
proposed a more general wipe detection algorithm by analyzing
the statistical change in mean and variance of the wiped frames.
However, this statistical approach assumes that there is only
slight motion in shots, so that the beginning and ending of wipe
regions can be identified. As a result, it can not detect wipes in
videos with fast motions. Menget al. [10] and Alattar [3] pro-
posed dissolve detection algorithms by looking for the parabolic
functions of intensity variance in the dissolve regions. These al-
gorithms assume that dissolves are linear, and hence, can only
tolerate slight motions during the dissolve periods.

In this paper, we proposed to detect camera cuts, wipes, and
dissolves based on a spatio-temporal slice model. The model is
built by constructing a spatio-temporal slice of the video and
analyzing its temporal coherency. Slice coherency is defined as
the logical consistency of an event in a shot which is referred
to as the common rhythm shared by all frames within a shot. A
camera break is detected if there is a change of rhythm. Early
work in the temporal slice analysis is mainly on motion estima-
tion [1], [14], [20], while our approach focuses on developing
algorithms to measure the change of rhythms for the cut, wipe,
and dissolve detections. Compared to other camera-break de-
tection algorithms, our proposed algorithm handles fast motions
and color changes within a shot. In addition, it is capable of de-
tecting various wipe patterns. The proposed dissolve detection
method is similar to [10], [3], except that the statistical features
are computed directly from the temporal slices.

1051–8215/01$10.00 © 2001 IEEE
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Fig. 1. Three types of camera breaks.

Fig. 2. Three spatio-temporal video slices taken from an image volume along
the temporal dimension.

A. Concept of Temporal Slice Coherency

Fig. 2 shows a video sequence arranged as a volume with
representing image dimensions andtemporal dimen-

sion. We can also view the volume as formed by a set of
spatio-temporal 2-D slices, each with dimension or ,
for example. Each spatio-temporal slice is then a collection
of scans1 in the same selected position of every frame as a
function of time. The spatio-temporal slice is used to extract an
indicator to capture the coherency of the video. In Fig. 3, we
show two spatio-temporal slices of different coherent rhythms.
A shot without motion will have horizontal lines running across

1A scan is defined as a strip of an image. For example, it can be a row or a
column in an image frame.

Fig. 3. Spatio-temporal slices of different rhythms. (a) Stationary scene.
(b) Fast motion.

(a)

(b)

(c)

Fig. 4. Samples of spatio-temporal slices. (a) Three shots connected by two
cuts. (b) Two shots connected by a wipe. (c) Two shots connected by a dissolve.

the spatio-temporal slice, while a shot with fast motion will
create oscillatory patterns.

Fig. 4 shows three spatio-temporal slices. Each slice contains
several spatially uniform color-texture regions, and each region
is considered to have a unique rhythm. The boundary of regions
which shows a distinct change of rhythm indicates the presence
of a camera break. The shape and orientation of the boundary
are affected by the types of camera breaks: a cut results in a
vertical boundary line, a wipe results in a slanted boundary line,
and a dissolve results in a slow transition which shows a burred
boundary.

It becomes obvious now that shot boundaries can be detected
and classified by segmenting a spatio-temporal slice into re-
gions each of a uniform rhythm. Compared with other existing
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approaches, our proposed approach offers the following advan-
tages.

1) Camera-break detection is reduced to image segmenta-
tion. By selecting a small subset of spatio-temporal slices
for segmentation, the processing of the whole image
volume is reduced to a few 2-D slices.

2) By analyzing the properties of regional boundaries, we
can detect, as well as classify, various types of camera
breaks.

3) By locating the two end points of a regional boundary, we
can detect the start and end time of a wipe.

4) Compared with the wipe detection algorithms proposed
in [2] and [16], our approach does not require performing
global motion compensation explicitly in order to distin-
guish between wipe and camera motion.

In this paper, we propose two different measures to detect the
breaks between coherent shots in a video life. First, the change
of rhythm of a spatio-temporal slice due to a cut or a wipe is
measured by the change of color-texture properties of the slice.
Second, the change of rhythm due to a dissolve is measured by
the statistical changes in the temporal slices. Since the rhythm of
the two adjacent shots are intertwined during a dissolve where
the change in coherency cannot be easily distinguished by color-
texture properties.

This paper is organized as follows. Section II presents
methods on the efficient computation of the three types of
spatio-temporal slices. Section III proposes a spatio-temporal
slice model which captures the shape of regional boundary as
a priori knowledge and segments the spatio-temporal slices
into regions. Sections IV and V discuss the cut and wipe
detection algorithms based on the proposed spatio-temporal
slice model. Section VI describes a statistical approach for
detecting dissolves. Section VII presents experimental results,
while Section VIII discusses the pros and cons of various tested
algorithms. Section VIII concludes the paper.

II. COMPUTATION AND PATTERNS OFSPATIO-TEMPORAL

SLICES

The size of a video sequence (the volume as in Fig. 2) is re-
duced by replacing each full size image with dc image.2 The
dc sequence is obtained directly from an MPEG video without
decompression3 . This offers two advantages: computational ef-
ficiency, since the volume is reduced by 64 times, and the image
volume is inherently smoothed.

Let be the number of images in a volume and be a dc
image of size . Our approach projects the 2-D image
vertically, horizontally and diagonally to three 1-D scans. The
value of a pixel in a scan is computed by

where (1)

2A dc image is formed by using the first coefficient of each8 � 8 discrete
cosine transform (DCT) block.

3The estimation of dc sequence from the P- and B-frames of a MPEG has
been discussed in [17].

Fig. 5. Spatio-temporal slice patterns generated by various types of camera
breaks:l-to-r (left-to-right); r-to-l (right-to-left); t-to-b (top to bottom);b-to-t
(bottom-to-top).

where (2)

(3)

where or and is the window of support for
the weighted projection of onto a scan line. The coeffi-
cients are selected weights of the linear projection where

. When is set to 1 and the projection
is simply the scan which passes through the center of the
image . To ensure smoothness of the scans, we select

to perform Gaussian smoothing on the dc data, where
[4]. By cascading these scans

over time, we acquire a 2-D spatio-temporal slice (size
) formed by the horizontal scans, a 2-D image(size
) formed by the vertical scans, and a 2-D image(size
) formed by diagonal scans. Fig. 2 has shown the three

spatio-temporal slices of a video sequence.
There are two questions associated with this approach: 1) the

number of spatio-temporal slices in a volume that should be
taken for analysis and 2) the strategy on how to select these
spatio-temporal slices. In principle, selecting more slices will
improve the detection results at the expense of computational
cost. To be most efficient, two spatio-temporal slices of orthog-
onal directions are necessary wherecaptures the temporal
coherency in the horizontal direction and models the tem-
poral coherency in the vertical direction. For our application,
in order to detect and classify different camera breaks, three
slices ( , ) are used to provide the necessary discrimi-
natory power to resolve the various types of breaks. The three
selected scans are chosen to be located at the center of the dc
image for convenience. Fig. 4 shows a sample set of ,
which will serve as models for the segmentation algorithm of the
spatio-temporal slices.

III. SPATIO-TEMPORAL SLICE MODEL

To effectively segment a spatio-temporal slice into coherent
regions, on one hand we need to extract features that represent
coherency, while on the other hand, we need to model the change
of coherency at the regional boundaries. We propose a model
that extracts the color-texture features from slices and captures
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the shape and orientation of regional boundary (as shown in
Fig. 5) as model energy. A regional boundary is detected when
there is a violation of color-texture coherency in the spatio-tem-
poral slices extracted from a video sequence.

For ease of understanding, the following mathematical nota-
tions are used in the remaining paper:

1) and
are denoted as the spatio-tem-

poral slices in color space4 and luminance
space. Each (or or ) is indexed by spaceand
time ( for instance), and .

2) , and are defined as the scans in and ,
respectively. Each scan is in fact one column of a slice
indexed by spaceat time .

3) , which is a pixel in the scan , is abbreviated to
(similarly for and ).

4) is defined as shot boundary and is
denoted as an image frame at time. We write if

is at the boundary of two shots.
5) In spatio-temporal slices, is also referred to as the

boundary of two connected regions. In this case, we write
, for example, to indicate a scan (a pixel)

is at the regional boundary.

A. Computing Color-Texture Feature

The color edge information of a spatio-temporal slice is com-
puted by

(4)

where is a convolution operator. is the first derivative
Gaussian along the directiongiven by

(5)

where and .
is a Gaussian filter controlled by a

smoothing parameter.
The texture feature is computed based on the Gabor decom-

position [7]. The idea is to decompose images into multiple
spatial-frequency channels, and to use the real components of
channel envelopes to form a feature vector. The complex Gabor
images are

(6)

The Gabor filter is expressed as

(7)

where

;
center of the desired frequency.

4Note that MPEG uses YCrCb color space. Our method converts the YCrCb
to RGB components.

We empirically set
and fix the values of and . As a result, the color-tex-
ture feature at each pixel is a 12-D feature vector. For
instance, the feature vector of a pixel at is in the
form , where

.

B. Formulating Model Energy

The probability that a frame is at the boundary of two shots
can be written as5

(8)

Combined with the local characteristic of Markov random field
[8], we can model the local spatio-temporal configuration of

, and as

(9)

where and are neighborhood systems that
will be described in Section III-C. Due to the Markov–Gibbs
equivalent [8], we can assume that

and follow Gibbs distribution. Hence,
we have

(10)

where is a normalizing constant, and is an energy func-
tion defined by the neighborhood system ( and

also have a similar formula as (10)). Substi-
tuting (10) into (9) and taking the logarithm on both sides, we
have

(11)

where . In other words,
the likelihood of a camera break at is dependent on the total
energy of the scans at time.

C. Segmenting Spatio-Temporal Slices

From (11), we further classify the energy functionto three
types of energy: , and , where

5H; V, andD are assumed independent since they are extracted from an
image volume through different orientations
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(a) (b)

Fig. 6. Neighborhood system of a pixelh (or h (i)). (a) Spatio-temporal configuration. (b) Connected components.

Fig. 7. An illustration for the energy computation of (12). The connected components which cross both the region A and region B will have higher energy of
� than the connected component which is on the regional boundary. As a result, in (a),U will have relatively low energy, in (b),U will have relatively
low energy, and in (c),U will have relatively low energy.

Each energy type has four elements describing their color-tex-
ture properties in color space and luminance space.

models the energy value of a vertical boundary line and
models the energy value of a slanted boundary line

of positive slope, while models the energy value of a
slanted boundary line of negative slope. For simplicity, we only
describe the energy formulation of . The
energy function of other slices are computed in a similar way.

The energy of a pixel is computed based on the configu-
ration of a neighborhood system,6 as shown in Fig. 6. We de-
fine eight connected components in
the system to characterize. Each component describes the
spatio-temporal relationship of with its neighboring pixels.
Except for , which represents a horizontal boundary, the con-
nected components describe the shape of the regional bound-
aries of interest to our camera break detection.

Based on the neighborhood system, we define

(12)

6H ;V ;D have a same neighborhood configuration.

where

are the connected components with a negative
slope, while are the connected components with
a positive slope. is a potential energy computed by the
sum of absolute feature values difference in the connected com-
ponent . Denote , and as the
neighbors of such that forms a connected com-
ponent . The potential energy which represents the edge in-
formation at in the color space is

where for , for , and
for . When formulating the potential energy which rep-
resents the texture information in the luminance space, (13) is
modified to

(14)

Fig.7illustratestheintuitivemeaningof(12).Ononehand,neg-
ativeweightsaregiventothepotentialenergiesofconnectedcom-
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(a) (b)

Fig. 8. Computed energy for the spatio-temporal slices shown in Fig. 4. (a)U of horizontal slices. (b)U of horizontal slices.

ponentswhichcross twodistinct regions,since theyconsistof rel-
atively high values; on the other hand, positive weights are given
to those components which are inside one region or along the re-
gional boundaries. When all the potential energies are summed,

and willgive lowenergyvalueswhenthere-
gional boundaries of the preferred direction are encountered.

Finally, the energies computed from the color and luminance
spaces are combined to form

(15)

(16)

(17)

where the energy computed through color edge and texture fea-
tures are equally weighted. Fig. 8 shows the segmentation re-
sults, the white lines which indicate the presence of low energy
run across the boundaries of connected regions.

IV. CUT DETECTION

From (11), let the regional boundary and ,
we have

(18)

It is obvious that cuts can be located by looking for scans pos-
sessing lower energy than a pre-defined threshold. However,
such a simple scheme will normally fail because it is difficult
to find a threshold that can tolerate both false and missed detec-
tions. Therefore, cuts are detected by looking for the local mini-
mals of energy value in our implementation. The idea is adopted
from Ferman and Tekalp [6], which uses the temporal filtering
techniques to enhance the values of local maximals. This idea
allows us to not perform shot pruning as proposed in [11].

V. WIPE DETECTION

Detection of wipes is more complicated than cuts due to the
variety of wipe patterns (see Fig. 11). Let the regional boundary

, we write (11) as

(19)

where

(20)

Fig. 9. Wipe detection algorithm.

Fig. 10. P and Q are the blocks (formed by five scans) adjacent to the suspected
wipe range.

The energy configuration of can cover different
wipe patterns. will pick up the lowest energy
which best fits the wipe pattern under investigation. Wipe de-
tection, in contrast to cut detection, can not be easily achieved
by investigating the energy value of every scan independently.
Instead, the total energy in a group of five adjacent scans is
summed when locating wipes. Fig. 9 depicts our wipe detection
algorithm for a suspected wipe pattern illustrated in Fig. 10.
It starts by computing the energy of three spatio-temporal
slices, and then locates the suspected wipe regions. The color
histograms of the two neighboring blocks (blocks P and Q, as
shown in Fig. 10) of the suspected wipe regions in and

are compared.7 If the histogram difference is larger than an
empirical threshold, Hough transform [15] will be performed
to locate the boundary lines formed by the wipe transitions.
These lines correspond to the local peaks in the Hough space.
Only pixels whose values exceed 0.05% of the total values in
the Hough space are considered as peaks. If 10% of the total

7The sizes of the suspected wipe regions inH;V andD are not necessary
to be equal, the sizes will be adjusted so that only the regions with low energy
values ofU (�) will be considered.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

(l) (m) (n)

Fig. 11. Various wipe transitions. (a) Iris round. (b) Irish shape. (c) Radial
wipe. (d) Clock wipe. (e) Flip over. (f) Spiral box. (g) Zig-zag blocks. (h)
Checker wipe. (i) Motion wipe. (j) Zoom wipe. (k) Barn door. (l) Band wipe.
(m) Wipe. (n) Page turn.

pixels are peaks,8 the suspected wipe regions are regarded as
object or camera motions.9

The duration of a detected wipe range is obtained directly
from a peak with the highest value in the Hough space. Let the
detected wipe range in as as

, and as . If , the
start of a wipe transition is detected as , while the
end of a wipe transition is detected as . A wipe
is also detected similarly if or or

. In addition, two wipes are merged if they are less
than 15 frames apart.

8The values 0.05% and 10% are empirically set. These values are set to be
low to avoid missed detections, since most of the false alarms have been pruned
by color histogram at this stage.

9This is because rigid object translation or camera panning (tilting) will usu-
ally generate multiple feature lines in temporal slices.

VI. DISSOLVE DETECTION

A dissolve connects the boundaries of two shots smoothly; as
a result, the connected shots share a blurred boundary region in
a spatio-temporal slice. Globally, the slice is composed of two
regions with different visual appearances; locally, it exhibits a
smooth transition from one region to another. Our dissolve de-
tection algorithm is similar to [3], [10], except that it computes
the statistical characteristic of intensity values directly on three
spatio-temporal slices rather than individual frames.

Denote as the intensity function of a scan su-
perimposed by two shots having intensity functions
with and with respectively, we can
model dissolve as

(21)

where varys linearly with in the
range [0, 1]. Denote be the mean intensity of a scan during
the interval , then we can have

(22)

where is the mean intensity of a scan at time
that belongs to shot . Taking the first derivative

, we have

(23)

Assuming and remain unchanged during dis-
solves, is a constant value.

Similarly, let be the variance of a scan during a dissolve,
then

(24)

where is the variance of a scan that belongs to shot. If
and remain constant, is a concave upward

parabola during .
Fade-in and fade-out are treated as special cases of dissolve,

either or will be replaced by a constant
image (black image in most cases). For fade-in, (21) becomes

(25)

Similarly, for fade out, (21) becomes

(26)

remains relatively constant during fade-in and fade-out,
while becomes a semi-parabolic curve. In addition, there
are abrupt changes in scans at the beginning of fade-in and at
the ending of fade-out. The abrupt changes can be detected by
the cut detection algorithm described in the previous section.

Based on the above discussion, dissolves can be detected by
looking for periods whose mean derivative and variance behave
as (23) and (24). In the implementation, our approach detects
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TABLE I
CUT DETECTION ON THEMOVIE SACRIFICE.mpg OF 738 FRAMES

(FIVE CAMERA CUTS)

TABLE II
CUT DETECTION ON THE TV STREAMS TOWEST.mpg OF

18 954 FRAMES (97 CAMERA CUTS)

TABLE III
CUT DETECTION ON THE MOVIE SHUSHAN.mpg OF

9150 FRAMES (119 CAMERA CUTS)

a period ( and ) that has an approxi-
mate constant mean derivative, and has a semi upward parabola
curve of variance in any two spatio-temporal images as a dis-
solve. In principle, this statistical-based approach can only be
tolerant to dissolves whose and
are constant over . For dissolves with motions, these
statistical measures will not be constant; however, they can still
demonstrate the parabolic shape of variance curve and the ap-
proximate constant of mean derivative.

VII. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed approach, we
conduct experiments on news sequences, documentary films,
movies, and TV streams. The size of an image frame is

. We first examine the performance of the cut, wipe, and
dissolve detectors independently on the image sequences. We
then activate all detectors on testing two image sequences to
demonstrate their capability on classifying camera breaks, and
their tolerance to false and missed detections. We employ recall-
precision to analytically measure the results. Denoteas the
number of frames in class as the number of detected frames

TABLE IV
CUT DETECTION ON THE NEWS PEARL.mpg OF 4300 FRAMES

(30 CAMERA CUTS)

TABLE V
CUT DETECTION ON THEMOVIE TUNGNIEN.mpgOF 11 247 FRAMES

(17 CAMERA CUTS)

TABLE VI
RECALL AND PRECISIONMEASURES FOR THEFIVE TESTEDVIDEO

in class and as the number of correctly detected frames in
class . Then

(27)

(28)

where and are in
the interval of [0, 1]. Low recall values indicate the frequent
occurrence of missed detections, while low-precision values
show the frequent occurrence of false alarms. For instance, if
only 20 frames are detected for a dissolve of 30 frames, then

and , while if there are 40 frames
detected, then and .

For simplicity, we define as the number of frames in a
sequence; as the number of correct detections;as false
alarms; and as missed detections.

A. Cut Detection

We compare the performance of our proposed cut detection
method (namely slice coherency) with three other approaches:
color histogram [13], [17], [21], frame difference [17], [21], and
step variable [18]. The first two approaches work directly on the
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TABLE VII
DETECTION RESULTS ONVARIOUS WIPE PATTERNS

dc sequence of MPEG videos, while the last approach works in
the uncompressed image domain. The color histogram differ-
ence between two dc images and are

(29)

where and are the histograms corresponding to the
RGB components of a dc image. The histogram is set to 64
bins since it has been shown to give sufficient accuracy [21].
The frame difference is computed as

(30)

Since the dc image is inherently smooth, it is less sensitive to
camera and object motion compared to the full frame’s pixel-
level difference [17]. In the implementation, a camera cut is de-
tected if the corresponding difference is a local maximal.

In contrast to other approaches operated in the compressed
domain, step-variable [18] speeds up the processing time by
subsampling video frames. Along the temporal dimension, two
frames separated bytime units are compared; along the spa-
tial dimension, only the predefined set of blocks in a frame are
compared. The value of is set adaptively
based on the scene activities. The mean value difference of each
block in two compared frames is used to detect cuts.

Tables I–V show detection results of the four different ap-
proaches for five tested sequences. In Table I, the video sac-
rifice.mpg consists of five shots taken in a scene. Non-adja-
cent shots may have similar color-texture properties, as a re-
sult step-variable misses one of the shots. In Table II, the video

towest.mpg has rich fighting and magical scenes, as a result,
false alarms and missed detections are arisen by all approaches.
Similarly, the shushan.mpg in Table III, which has rich special
cinematographical effects, also causes the same problems. In
Table IV, the pearl.mpg is a news sequence with some sport
scenes with fast and large object motions. Although the color
histogram does not cause any false alarm, a miss has happened at
the location where there are two adjacent shots of a soccer field
taken from two different view points. In Table V, the movie tung-
nien.mpg consists of both indoor and outdoor long-take shots.10

In one of the shots, there is an object moving in and out of the
screen abruptly; as a result, both the slice coherency and frame
difference approaches give rise to false alarms.

Table VI shows the recall-precision measures of all ap-
proaches for the five tested video. While frame difference
shares with slice coherency the best recall rate, it suffers from
the lowest precision rate. On the other extreme, color histogram
has the highest precision but the lowest recall rate. The results
are not surprising since frame difference can only model local
changes while color histogram can only handle global changes.
Our proposed approach acquires a better trade-off in terms of
recall and precision mainly due to the presence of coherency
which provides useful information for cut detection. Although
slice coherency only processes partial information as the
strategies adopted by step-variable, it is comparatively tolerant
to both missed and false detections.

B. Wipe Detection

We compare the performance of our wipe detection algorithm
(namely slice coherency) with the statistical approach proposed

10Stationary camera with or without object motions.
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Fig. 12. Spatio-temporal images of various wipe patterns.

by Alattar [2]. The statistical approach first detects the spikes in
the second derivative of the mean and variance of frames. These
spikes mark the end or the start and end of a potential wipe.
The approach then investigates the average values of the first
derivative of the mean and variance of a suspected wipe region.
A wipe is detected if the average value is above a threshold.

We test these two algorithms with 14 different wipe transi-
tions which are shown in Fig. 11. All the tested videos consist
of two shots with slight to moderate motions. Table VII lists
the wipe transitions along the actual and detected wipe frames
by these two algorithms. Our proposed algorithm shows a sig-
nificantly better performance than the statistical approach in
terms of recall and precision, as listed in Table VIII. The sta-
tistical approach fails in detecting some wipes because of the
absence of sharp spikes in the wipe regions. Moreover, it is
blind when marking the boundary of a wipe if there are motions
in two shots. In contrast, our approach successfully detect all
wipes except that few frames at the boundary of some wipes are
missed or over-estimated. We also test the cut detectors (color
histogram, frame difference and step-variable) as discussed in
Section VII-A on the 14 wipe transitions. However, none of the
wiped frame is detected by these three approaches since the dif-
ference between two adjacent wiped frames is small.

Fig. 12 shows the spatio-temporal slices created by the wipe
transitions in Table VII, while Fig. 13 shows the computed en-
ergy of these spatio-temporal slices. It is worth noticing
that the regional boundaries of the three selected spatio-tem-
poral slices ( , and ) cover most of the wipe transition
periods since most wipes start at one direction/corner and end at
the opposite direction/corner (e.g., wipe and spiral box), or start

Fig. 13. Computed energy for the spatio-temporal slices of various wipe
patterns.

at the center and grow outward (e.g., zoom wipe and barn door
wipe). Among the 14 tested wipe transitions, only four frames
in clock wipe, eight frames in motion wipe, and three frames in
page turn are not covered by the regional boundaries of the three
selected spatio-temporal slices.

C. Dissolve Detection

Table IX shows the experimental results of our proposed
method on two tested videos. All dissolves involve slight
motions and cross about 30 frames. For the detected dissolve
sequences, the number of undetected dissolve frames on
average are six frames. Fig. 14 illustrates an example of how
dissolves are detected. The missed detections are due to the
low value of variance between two shots; as a result, the shape
of the parabolic cannot be detected. The recall and precision
values of the two tested videos are 0.90 and 0.88, respectively.

D. Camera Break Detection

In this section, we integrate the cut, wipe, and dissolve de-
tection algorithms to detect camera breaks. The dissolve detec-
tion is started after all the cuts and wipes are detected. The ex-
perimental results are summarized in Table X. Most of the de-
tected cut and wipe frames are classified correctly. The two false
alarms in cut detection are due to the sharp change of illumina-
tion. The only false alarm arisen in wipe detection is because
of a large object that moves across the screen from bottom to
top. The two missed wipes are due to the low contrast between
two connected shots and a long wiped period (about 90 frames).
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TABLE IX
DISSOLVE DETECTION RESULTS

Fig. 14. Detection of dissolves by looking for the parabolic curves of variance
and the approximate constant of mean derivative in a horizontal spatio-temporal
slice.

Among the correctly detected wipes, the average number of over
detected wiped frames is five, and the number of missed de-
tected wiped frames is two. The missed dissolves are due to the
long dissolve period (120 frames), and object motions during
dissolve periods. False dissolve detections are due to camera
motions which cause the mean derivative and variance of the
corresponding scans resemble a dissolve pattern.

VIII. D ISCUSSION

To analyze the pros and cons of our proposed approach, we
summarize four main observations found in the experiments.

1) Presence of structural information: Compared with other
approaches, slice coherency can handle fast motions and
color changes within a shot. This is due to the presence
of structural information provided by the regional bound-
aries in spatio-temporal slices. The structural information
is not only exploited to classify cut, wipe and dissolve, but
is also employed to distinguish wipe, motion, and color
changes. For instance, Fig. 15 shows a shot undergoing

TABLE X
CAMERA BREAK DETECTION RESULTS

(a) (b) (c) (d)

(e) (f) (g)

Fig. 15. A shot of 30 frames (670th to 699th). Sample image frames: (a) 680th;
(b) 685th; (c) 690th; and (d) 699th. (e) Horizontal spatio-temporal slice. (f)
Vertical spatio-temporal slice. (g) Diagonal spatio-temporal slice.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 16. A shot of 42 frames (8894th to 8935th). Sample image frames: (a)
8916th; (b) 8923rd; (c) 8928th; and (d) 8931st. (e) Horizontal spatio-temporal
slice. (f) Vertical spatio-temporal slice. (g) Diagonal spatio-temporal slice.

significant changes of color, while other approaches raise
false alarms, slice coherency successfully classifies it as
one shot. Figs. 16 and 17 further show two shots of fast
motion which have given rise to false alarms by other ap-
proaches, but however, induce no error by our proposed
method.

2) Presence of local information: Unlike the color his-
togram, slice coherency can also capture local changes.
In Fig. 18, the color histogram fails to detect the cut due
to the similar color distribution between two adjacent
shots; however, slice coherency succeeds as there is a
shift of spatial texture arrangements. Compared with
frame difference which can also detect the cut in Fig. 18,
our approach is more efficient since only partial informa-
tion of dc images are used. A step variable, which also
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(a) (b) (c) (d)

(e)

(f)

(g)

Fig. 17. A shot of 216 frames (3263th to 3478th). Sample image frames: (a)
3330th; (b) 3334th; (c) 3338th; and (d) 3342nd. (e) Horizontal spatio-temporal
slice. (f) Vertical spatio-temporal slice. (g) Diagonal spatio-temporal slice.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 18. Two shots of 100 frames (3600th to 3657th and 3658th to 3699th).
Sample image frames: (a) 3650th; (b) 3657th; (c) 3658th; and (d) 3660th. (e)
Horizontal spatio-temporal slice. (f) Vertical spatio-temporal slice. (g) Diagonal
spatio-temporal slice.

processes partial information, however, fails in detecting
the cut.

3) Problems in dissolve detection: The statistical properties
discussed in Section VI are not unique to dissolve.
Camera and object motions can have similar statistical
patterns. This is the main challenge for the general suc-
cess of dissolve detection. In addition, the intervention
of motion during the dissolve period will perturb the sta-
tistical properties of a dissolve. As a result, the detection
of an exact dissolve period is almost impossible. The
duration of a dissolves can vary from one to hundred
frames. A dissolve of long period is extremely difficult
to be detected since the statistical change between two
adjacent shots is not easily seen.

4) Problems remain for all approaches: Sharp illumination
changes are still difficult problems which remain to be
solved. Fig. 19 illustrates an example where the illumina-
tion effect creates two distinct regions in the spatio-tem-
poral slices.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 19. A shot of 88 frames (2600th to 2687th). Sample image frames: (a)
2660th; (b) 2663rd; (c) 2664th; and (d) 2670th. (e) Horizontal spatio-temporal
slice. (f) Vertical spatio-temporal slice. (g) Diagonal spatio-temporal slice.

In terms of speed efficiency, our proposed approach oper-
ates in real-time (30 frames/s). On a Pentium II platform, our
camera break detection algorithm (include cut, wipe and dis-
solve detections) runs in the speed of 35 frames/s. Among the
three detectors, cut detector operates in 40 frames/s, wipe de-
tector in 38 frames/s, and dissolve detector in 86 frames/s. The
most time-consuming part in the algorithm is the convolution of
Gaussian and Gabor filters with spatio-temporal slices, as dis-
cussed in Section III-A.

IX. CONCLUSION

We have presented a procedure for detecting and clas-
sifying cuts, wipes, and dissolves based on the analysis of
spatio-temporal slices. Our approach reduces video-segmen-
tation problems to image-segmentation problems, and in
addition, processes frames directly in the MPEG domain,
resulting in an efficient framework. The proposed algorithms
can compromise the recall and precision performace of cut
detection, handle various types of wipe transitions, and detect
most linear dissolves, even though only partial data is analyzed.
In the future, we will study a more sophisticated dissolve
detection algorithm and the possibility of estimating image and
motion features directly from the rhythm of shots for video
database indexing and retrieval.
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