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Texture Features for Browsing and 
Retrieval of Image Data 

B.S. Manjunathi and W.Y. Ma 

Abstract-Image content based retrieval is emerging as an important 
research area with application to digital libraries and multimedia 
databases. The focus of this paper is on the image processing aspects 
and in particular using texture information for browsing and retrieval of 
large image data. We propose the use of Gabor wavelet features for 
texture analysis and provide a compirehensive experimental evaluation. 
Comparisons with other multiresolution texture features using the 
Brodatz texture database indicate that the Gabor features provide the 
best pattern retrieval accuracy. An application to browsing large air 
photos is illustrated. 

Index Terms-Digital libraries, image database, content-based image 
retrieval, texture analysis, Gabor wavelets. 
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1 INTRODUCTION 
RETRIEVAL of image data based on pictorial queries is an interest- 
ing and challenging problem. The recent emergence of multimedia 
databases and digital libraries m,ikes this problem all the more 
important. While manual image annotations can be used to a cer- 
tain extent to help image search,, the feasibility of such an ap- 
proach to large databases is a qu'estionable issue. In some cases, 
such as face or texture patterns, simple textual descriptions can be 
ambiguous and often inadequate for database search. 

The objective of this paper is to study the use of texture as an 
image feature for pattern retrieval. An image can be considered as 
a mosaic of different texture regions, and the image features asso- 
ciated with these regions can be used for search and retrieval. A 
typical query could be a region of interest provided by the user, 
such as outlining a vegetation patch in a satellite image. The input 
information in such cases is an intensity pattern or texture within a 
rectangular window. See Fig. 6 for an example of a texture based 
browsing application. 

Texture analysis has a long hktory and texture analysis algo- 
rithms range from using random field models to multiresolution 
filtering techniques such as the wavelet transform. Several re- 
searchers have considered the use of such texture features for pat- 
tern retrieval [181, [191. This paper focuses on a multiresolution 
representation based on Gabor filters. The use of Gabor filters in 
extracting textured image features is motivated by various factors. 
The Gabor representation has been shown to be optimal in the 
sense of minimizing the joint two-dimensional uncertainty in 
space and frequency [4]. These filters can be considered as orien- 
tation and scale tunable edge and line (bar) detectors, and the sta- 
tistics of these microfeatures in a given region are often used to 
characterize the underlying texture information. Gabor features 
have been used in several image .analysis applications including 
texture classification and segmentation [l], [141, image recognition 
[51, [81, [131, image registration, and motion tracking [151. 

The main contributions of this paper are summarized below: 
1) A simple texture feature representation based on Gabor 

features is proposed, and a filter design strategy is sug- 
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gested to reduce the redundancy in the representation. 
2) An adaptive filter selection algorithm is proposed which can 

facilitate fast image browsing. 
3) A detailed comparison with the performance of three other 

multiscale texture features is provided. Our proposed repre- 
sentation compares favorably in terms of feature computa- 
tions and retrieval accuracy. 

4) Finally, an application to browsing large air photos is dem- 
onstrated. 

2 TEXTUREFEATUREEXTRACTION 
2.1 Gabor Functions and Wavelets 
A two dimensional Gabor function g(x ,  y) and its Fourier trans- 
form G(u, v) can be written as: 

where e,( = 1/2zo, and ou = 1/2zo,. Gabor functions form a 

complete but nonorthogonal basis set. Expanding a signal using 
this basis provides a localized frequency description. A class of 
self-similar functions, referred to as Gabov wavelets in the following 
discussion, is now considered. Let g(x,  y) be the mother Gabor 
wavelet, then this self-similar filter dictionary can be obtained by 
appropriate dilations and rotations of g(x,  y) through the generat- 
ing function: 

gmil(x, y) = L"G(x' ,  y'), U > 1, m, n = integer 

x ' =  a-"(xcosO+ysinO), andy '= a-*(-xsinO+ycosO), (3) 

where O = n z f K  and K is the total number of orientations. The 

scale factor U-" in (3) is meant to ensure that the energy is inde- 
pendent of m. 

2.2 Gabor Filter Dictionary Design 
The nonorthogonality of the Gabor wavelets implies that there is 
redundant information in the filtered images, and the following 
strategy is used to reduce this redundancy. Let U, and U ,  denote 
the lower and upper center frequencies of interest. Let K be the 
number of orientations and S be the number of scales in the mul- 
tiresolution decomposition. Then the design strategy is to ensure 
that the half-peak magnitude support of the filter responses in the 
frequency spectrum touch each other as shown in Fig. 1. This re- 
sults in the following formulas for computing the filter parameters 
ou and ou (and thus cr, and cy). 

where W = U, and m = 0, 1, ..., S - 1. In order to eliminate sensi- 
tivity of the filter response to absolute intensity values, the real 
(even) components of the 2D Gabor filters are biased by adding a 
constant to make them zero mean (This can also be done by setting 
G(0,O) in (2) to zero). 
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2.3 Feature Representation 
Given an image I (x ,  y), its Gabor wavelet transform is then defined 
to be 

(5) 

where * indicates the complex conjugate. It is assumed that the 
local texture regions are spatially homogeneous, and the mean 
pm, and the standard deviation cmn of the magnitude of the trans- 
form coefficients are used to represent the region for classification 
and retrieval purposes: 

W,,,(XJY) = p ( ~ l ! Y l ) ~ m &  - X1.Y - Yl)dx,dYlr 

P,, = Jjlwm.(xy)ldxdy, and omn = J j j ( l ~ ~ ~ ~ ~ ( ~ , y ) \  - ~ , , , ) ~ d x d y .  (6) 

A feature vector is now constructed using pm,, and omn as fea- 
ture components. In the experiments, we use four scales S = 4 and 
six orientations K = 6, resulting in a feature vector 

(7) = [Po0 0 0 0  Pol ... P35 0 3 5 1 .  

I - 

2.3.1 Distance Measure: 

Consider two image patterns i and 1, and let 7") and 7'') represent 
the corresponding feature vectors. Then the distance between the 
two patterns in the feature space is defined to be 

where 

a(pL,,) and a(o,,) are the standard deviations of the respective 
features over the entire database, and are used to normalize the 
individual feature components. 

2.4 Retrieval Performance 
2.4.1 Texture Database 
The texture database used in the experiments consists of 116 dif- 
ferent texture classes. Each of the 512 x 512 images is divided into 
16 128 x 128 nonoverlapping subimages, thus creating a database 
of 1,856 texture images. A query pattern in the following is any 
one of the 1,856 patterns in the database. This pattern is then proc- 
essed to compute the feature vector as in (7). The distance d(i, j ) ,  
where i is the query pattern and j is a pattern from the database, is 
computed. The distances are then sorted in increasing order and 
the closest set of patterns are then retrieved. In the ideal case all 

the top 15 retrievals are from the same large image. The perform- 
ance is measured in terms of the average retrieval rate which is 
defined as the average percentage number of patterns belonging to 
the same image as the query pattern in the top 15 matches. 

We observe that the use of omn feature in addition to the mean 
improves the retrieval performance considerably. This perhaps 
explains the low classification rate of the Gabor filters reported in 
[3] where only the mean value was used. On the average 74.37% of 
the correct patterns are in the top 15 retrieved images. The per- 
formance increases to 92% if the top 100 (about 6% of the entire 
database) retrievals are considered instead (i.e., more than 13 of 
the 15 correct patterns are present). Some retrieval examples are 
shown in Fig. 2. A detailed comparison with other texture features 
is given in Section 4. 

(4 
Fig. 2. Texture browsing using Gabor features. Examples shown are 
some of the difficult patterns to analyze. The average retrieval rate is 
shown in the parentheses: (a) Texture browsing interface with all 116 
textures and retrievals for D42, lace (50%), (b) D43, swinging light bulb 
(54%), (c) D23, beach pebbles (54%), and (d) D91, clouds (25%). The 
first image in each of (b)-(d) represents the query image. Note that some 
of the incorrect matches actually look quite similar to the query pattern. 

3 ADAPTIVE FILTER SELECTION 
In many cases it is desirable to reduce the image processing time 
to the extent possible while not seriously affecting the overall per- 
formance. One way to reduce the computations is to select the 
Gabor filters in a pattern dependent way. 
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An insight into the discrimination quality of individual features 
can be obtained by considering the average intraclass to inter-class 
distance ratio for each of the components. This ratio is about 0.25 
on the average, with higher frequency components providing a 
better discrimination [16]. In database search one is often inter- 
ested in finding out how much of the search space can be elimi- 
nated by using a particular feature. Suppose we want to keep all 
the 15 correct textures belonging to the same pattern in the set of 
retrieved images. The average threshold is about 30%, and as in 
the previous case, high frequency components have a better dis- 
crimination. More details can be found in [161. These experiments 
indicate that each feature component can individually provide 
useful discrimination measure which can be further improved by 
selectively choosing these filters based on the query pattern. 

The selection scheme described here uses the spectral informa- 
tion in conjunction with the average database image properties to 
select a subset of filters. The pur-pose is to identify salient query 
image properties which best diijtinguish it from the database 
items. Fig. 3 shows a schematic diagram of this method. The dif- 
ference between the spectrum of the input image pattern and the 
average spectrum provides information about salient spectral 
characteristics of the given image. Let 

where F&uf(n, v) is the Fourier transform of the input image pat- 

tern. F,,,,, ( U ,  v) and FUu,(u, v) are the mean and variance associated 
with the distribution of Fourier transforms of all image patterns in 
the database. D(u, U) basically is the energy of the difference nor- 
malized by the variance associated with each frequency compo- 
nent ( U ,  U ) .  Each filter is evaluated based on the total diffevence en- 
ergy within its spectral coverage: 

where G,,(u, U )  is the frequency response of the filter g,,(x, y) . 
The larger the value i,, is, the better the performance of the filter 
will be for pattern retrieval. Thus the filters can be ordered based 
on cmx. Fig. 3 shows an example where the input pattern has 
strong orientation preference which distinguishes the pattern from 
much of the database images. Using only the top four filters, one 
can retrieve on the average about 50% of the correct patterns in the 
top 15 retrieved patterns 1161. Such a strategy may be reasonable in 
many image database applications and amounts to a significant 
savings in image processing computations. Fig. 4 shows some 
examples wherein different number of filters are used. 

Computing the entire Gabor feature vector of (7) takes 9.3 sec- 
onds of CPU time (in MATLAB on a SUN-Sparc20, see Table 2). 
Search and retrieval takes about 1.02 seconds. Using only four 
feature components requires 2.3 seconds of feature extraction time 
including the adaptive filter selection (0.7 seconds), and about 0.1 
seconds for search and retrieval. 

4 EXPERIMENTAL RESULTS 
A detailed comparison with some of the other recently proposed 
multiresolution texture image features are made in this section. For 
the Gabor feature case, the 24 x 2 component feature vectors are 
used. An application to browsing large air-photos is illustrated. 

4.1 Comparison with Other Texture Features 
The comparisons are made with the conventional pyramid- 
structured wavelet transform (T’WT) features, tree-structured 
wavelet transform (TWT) features, and the multiresolution simul- 
taneous autoregressive model (MR-SAR) features. The filter coeffi- 
cients used for computing PWT are the 16-tap Daubechies or- 

database + 

input FFT 
pattern 

# 2  # 4  

selected filters 

Fig. 3. An example of the filter selection strategy. 

Fig. 4. Examples of retrieval using a different number of filters selected 
by the adaptive filter selection strategy. The upper-left image in each 
block is the query image (D83: woven matting), and the top 15 
matches are shown in row scan order with increasing distance. Top: 
Results using one filter; bottom: results using two filters. With four fil- 
ters, all the correct 15 patterns are retrieved for this case. 

thogonal wavelets [6] (same as the ones used in [3] for the TWT). 
The 128 x 128 image pattern is decomposed into three levels (4 x 3 
= 12 bands) of the wavelet transform. The mean and standard de- 
viation of the energy distribution corresponding to each of the 
subbands at each decomposition level are used to construct a (12 x 2) 
feature vector. 

In [3], decomposition of image subbands at each level is based 
on energy considerations and this results in a tree structured de- 
composition where different patterns have different structures. For 
pattern retrieval applications, it is convenient to have a fixed 
structure. A fixed decomposition tree can be obtained by sequen- 
tially decomposing the LL, LH, and HL subbands. The HH band is 
not decomposed as this often does not lead to stable features. A 
three level decomposition results in 52 (4(1 + 3 + 9)) subbands. As 
in the PWT, the mean and standard deviation in each subband are 
used to construct a 52 x 2 component feature vector. 

The third set of feature used are the MR-SAR model features 
[171. Previous work 191, [201 indicate that the MR-SAR features at 
levels 2, 3, and 4, provide the best overall performance. At each 
level, five parameters are computed to represent the texture, thus 
requiring a total of 15 feature components. The Mahalanobis dis- 
tance is used to compare the feature vectors. 

4.1.1 Summary of Comparisons 
Table 1 provides a summary of the experimental results. It shows 
the retrieval accuracy of the different texture features for each of 
the 116 texture classes in the database. The Gabor features give the 
best performance at close to 74% retrieval. This is closely followed 
by the MR-SAR features at 73%. The TWT features perform mar- 
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Average Retrieval Rate% 

Gabor PWT TWT MRSAR 
99.17 97.08 97.50 98.75 D42 
52.92 32.50 36.25 67.92 D(3 
9458 7542 58 33 49.17 W 

100.00 90.83 6792 88 33 D45 
72.92 52.92 52.08 63 33 D46 

100.00 l00.00 I 0 0 0 0  l00.00 D47 
35.42 21.25 1958 52.08 D-18 
9500 79.58 7458 95.12 E49 
93.75 84.58 77.50 61.58 D50 
85.83 78.75 68.75 79.17 D51 

100.00 7375 80.00 98.33 D52 
86.25 7958 70.42 75.00 D53 
42.92 38.75 30.83 4375 D54 

100.00 lCKl.00 100.00 10000 DS5 
69.17 79.58 5792 8000 056 

100.00 100.00 100.00 100.03 D57 
100.00 100.00 100.00 100.00 D58 
79 17 79.17 92.50 69.58 D59 
80.42 73.33 62.50 86 67 DK) 

100.0 8750 94.58 10000 D61 
100.03 100.00 100.00 10000 D62 
75.00 82.50 7083 56.67 D63 
5375 41.25 41.67 39.58 D64 
8583 95.83 82.92 90.03 D65 
88.75 53.75 48.33 75.83 D66 

100.00 88.75 99.17 100.00 D67 
36.67 34.58 34.58 10.42 063 
95.42 8667 9750 88.75 D69 
72.08 60.00 64.58 67.50 D70 
33.75 23.75 33.75 50.12 D71 
7792 72.50 57.50 92.50 D72 
99 17 92.92 98.33 100.03 D73 
9833 82.92 68.33 89.17 D71 
49.17 57.08 30.00 3167 D75 

100.00 78.75 7958 9958 D70 
4667 31.67 29 17 4208 D77 
1958 24.17 27.92 6000 D7S 
52.08 56.67 67.50 41 67 11 D79 
7875 68.33 52.08 58.33 D8C 

TABLE 1 
AVERAGE RECOGNITION RATE FOR THE 11 6 TEXTURE IMAGES IN THE DATABASE. 

THE D* LABELS INDICATE TEXTURES FROM THE BORDATZ ALBUM [2] AND o* LABELS INDICATE TEXTURES FROM THE USC DATABASE. 

Feature Exvaction 9.3 sec. 2.3 sec 1.3 sec 
Time 

2.3 sec 34.0 sec 

;&or PWT TWT MHSAF 
50.00 59.17 56.67 38.75 
11.25 1375 1125 9.58 
1250 1333 1192 l 5 W  

11.58 22.m 2583 333 
94.17 70.42 80.12 92.50 
00.W 100.00 10000 9750 
19 17 7108 77.08 8667 
10000 100.00 100.00 100.00 
87.92 5625 75.83 87.08 
83.75 91.25 93 33 90.83 
72.08 55.42 61 25 70.00 

100.00 100.03 100.00 10003 
50.83 56.67 -17.50 57.92 
IM).00 9708 99.17 103.00 
I” 10000 100.03 100.03 
I0000 91 17 100.03 100.00 

29.58 18.33 25.12 27.92 
20.42 1083 14.17 2333 
5250 3000 3792 5000 
13.75 -17.92 -1583 41.25 
35.83 15.00 50.83 -13.75 
34 I7 21 17 27.08 35.00 
9458 9000 79.17 97.92 

10000 100.00 98.75 100.00 
96.67 9000 95.00 68.33 
70cO 53.75 63 75 6208 

IoO.CO 9958 I 0 0 0 0  100.00 

4250 39.17 44.17 36.25 
19 17 15.42 57.50 79.17 
42 92 15.83 68.75 72.50 
-17.50 18.75 75 83 79.17 
66.67 51.67 57 92 5708 
78.75 85.00 8500 94.58 
95.12 86.67 93 75 98.75 
99 17 96.25 95.83 92.08 

100W l00.00 100oi) 100.03 

97.50 93.33 85.42 88.33 
100.00 100.00 10000 97.92 
100.00 8583 8583 91 67 
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Averaee Retrieval Rate% 

3abor PWT TWT MRSAH 
100.00 90.83 95.83 94.17 
100.00 Ioo.00 10000 10300 
100.00 98.75 99.58 99.17 
100.00 100.00 100.00 99.58 
99.58 9667 100.00 99.17 
91 67 6083 71.61 95.00 
9958 9208 82.92 92.92 
41.67 48.75 51.67 4583 
21.25 2208 2625 10.00 
34.58 19.58 31 67 47.08 
25.42 12.92 16.25 27.50 
87.50 92.50 92.08 68.33 
72.92 38 75 30.03 62.08 

100.00 91 67 92.08 90.83 
87.50 65 CO 92.50 87.50 
98.33 7750 94.17 99.17 
37.08 29.17 39.58 37.92 
52.50 52.08 65.00 72.92 
87.08 71.67 53.33 74.58 
58.75 6500 63.75 62.92 
53.33 51 25 51.25 56.25 
56.67 7250 73.75 66.67 
54.58 59.17 66.67 48.75 
63.33 50.00 44.58 53.33 
14.17 55.83 54.58 51.67 
52.50 59.58 60.83 55 42 
3750 18.75 29.58 32.92 
78 75 71.75 76.67 76.25 
87.92 78 75 75.42 62.92 
90.83 9042 62.92 91.67 
61.67 50.42 5833 6313 

100.00 100.00 10000 9208 
100.00 100.00 98.75 100.00 
98.75 75.42 93.33 97.50 

I00.lx) 10000 100.00 100.00 
86.25 83.33 100.00 93.33 

100.00 I0000 100.00 lOO.00 

7127 68.75 5208 57.50 
74.37 68.70 69.41 73.18 

TABLE 2 
CPU TIMES (ON A SUN SPARC20 WITH ONE PROCESSOR) AND FEATURE VECTOR LENGTH FOR THE VARIOUS TEXTURE FEATURES 

GABOR FEATURES ARE COMPUTED IN MATLAB AND ALL THE OTHERS ARE WRITTEN IN c LANGUAGE. 

Gabor k a t u r e s  Ti PWT I TWT 1 MRSAR I 
Full featuie ~~~~~ 

I pealure Vecior 48 24 
Lenzlh 

I Searchingand 
Sortine Time 

I 1.02sec I 0 1 sec I 0.98 sec I 1 7 0 5 e c  I 0 7 0 s c c  1 
ginally better (69.4%) than the PWT features (68.7%). Fig. 5 shows 
a graph illustrating this retrieval performance as a function of 
number of top matches considered. In summary, 

In general, feature components corresponding to higher fre- 
quencies have better discriminating performance. However, 
decomposing the HH band in the tree-structured represen- 
tation often leads to a decrease in performance, indicating 
that these features are not very robust. 
Experiments with different wavelet transforms indicate very 
little variation in performance with respect to the choice of 
filters [lo]. 
The marginal improvement of the TWT features comes at 
the expense of having a much larger feature vector, which 
adds to the overhead associated with indexing and search. 

It is important to explore different similarity measures for 
each of the different sets of features. For example, using the 
Mahalanobis distance instead of the Euclidean distance im- 
proved the performance from 64% to 73% for the MR-SAR 
features. Normalized Euclidean distance worked better for 
all the others. 
For Brodatz images, best results using the Gabor features were 
obtained using four scales and six orientations within each 
scale. Note that rotation and scale invariance is not addressed. 

Table 2 provides the CPU times for feature extraction and se- 
quential search of the database. The computations involving Ga- 
bor features are performed in MATLAB where as the other feature 
computations are implemented in C language. In terms of feature 
computation time, the MR-SAR is the most expensive. 
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Fig. 5. Retrieval performance according to the number of top matches 
considered. 

4.2 An Image Browsing Example 
Query based on texture properties will have many applications in 
image and multimedia databases. Here, we describe with an ex- 
ample our current work on incorporating these features for 
browsing large satellite images and air photos. This work relates to 
the UCSB Alexandria digital library project [21] whose goal is to 
create a digital library of spatially indexed data such as maps and 
satellite images. Typical images in such a database range from few 
megabytes to hundreds of megabytes, posing challenging prob- 
lems in image analysis and visualization of data. Content based 
retrieval will be very useful in this context in answering queries 
such as ”Retrieve all LANDSAT images of Santa Barbara which 
have less than 20% cloud cover,” or ”Find a vegetation patch that 
looks like this region.” 

We are currently investigating t.he use of texture primitives to ac- 
complish rapid content based browsing within an image or across 
similar images. Fig. 6 shows an example of browsing 5,248 x 5,248 
air photos. The original image is analyzed in blocks 128 x 128 pix- 
els and the texture features are icomputed and stored as image 
”meta-data.” The user can select any position and use that pattern to 
search for similar looking regions. Our a r ren t  work is on incorpo- 
rating simple texture based segmentation schemes into this brows- 
ing thus allowing arbitrarily shaped regions into the analysis. 

4.3 Discussions 
A Gabor wavelet based texture analysis scheme is proposed and 
its application to image databases is demonstrated. A comprehen- 
sive performance evaluation of thse method is given using a large 
number of textures and a comparison with some of the well 
known multiresolution texture classification algorithms is made. 
Further, a novel adaptive filter selection strategy is suggested to 
reduce the image processing computations while maintaining a 
reasonable level of retrieval performance. The experimental results 
indicate that these Gabor feature are quite robust. Rotation and 
scale invariance is important in many applications and our pre- 
liminary results on rotation invariant classification [7] using Gabor 
features are very encouraging. 

Finally, a note on similarity measures. It is widely acknowledged 
that this is an important but a difficult problem. Our initial results 
using simple hybrid neural network learning algorithms appear 
very promising in the context of learning similarity 1111, [121. 
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Retrieving Multispectral Satellite Images 
Using Physics-Based Invariant 

Representations 

Glenn Heaiey and Amit Jain 

Abstract-We present a set of algorithms and a search strategy for 
the robust content-based retrieval of multispectral satellite images. 
Since the property of interest in these images is usually the physical 
characteristics of ground cover, we use representations and methods 
that are invariant to illumination and atmospheric conditions. The 
representations and algorithms are derived for this application from a 
physical model for the formation of multispectral satellite images. The 
use of several representations and algorithms is necessary to interpret 
the diversity of physical and geometric structure in these images. 
Algorithms are used that exploit multispectral distributions, 
multispectral spatial structure, and labeled classes. The performance 
of the system is demonstrated on a large set of multispectral satellite 
images taken over different areas of the United States under different 
illumination and atmospheric conditions. 

Index Terms-Image database,image retrieval, color constancy, 
satellite images, color, machine vision, texture, computer vision, 
recognition. 

+ 
1 INTRODUCTION 
MULTISPECTRAL remote-sensing data are being used for an in- 
creasing number of applications in a diverse set of fields including 
agriculture, geology, mapping, water resources, and environ- 
mental science. The volume of satellite data that is available for 
such applications is staggering. A Landsat thematic mapper, for 
example, generates seven band images using three visible and four 
infrared regions of the spectrum. Even though the Landsat pro- 
vides coarser spatial resolution than many other remote-sensing 
satellites, a single image corresponding to a 170 km by 185 km 
region of earth requires over 200 Mbytes of storage and the satel- 
lite generates about 5,000 images per week. It has been predicted 
that in a few years the amount of data originating from remote- 
sensing satellites will reach a terabyte per day [Z]. 

Given this large volume of data, effective tools for image access 
are essential to allow the information in the database to be fully 
exploited. Image database systems traditionally access images 
using keywords or text associated with the images. Unfortunately, 
it is often difficult to assign textual descriptions to images and 
consequently text-based queries often fail. In addition, the task of 
manually annotating the current volume of satellite imagery 
would involve a large amount of time and expense. 

A recent trend in retrieval from image databases has been to 
allow queries based on image content [121,[111,[151, [11. Using this 
paradigm, a user can specify a search using image properties such 
as shape, color, or texture. In most cases, the user will not specify 
numerical values of these properties, but rather will present the 
system with example images. The system will compute features 
from the example and use these features for database indexing. In 
most cases, a metric is defined on these features that is intended to 
model perceptual similarity. 
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